

Journal Traduction : le sophisme systemd -- Leszek Urbanski, tgr, monolight.cc

Posté par Guillaume Knispel le 06 mars 2012 à 20:46.

Étiquettes :

	troll

	systemd

	fosdem

	lennart_poettering

	lwn

[image:]

Sommaire

	
Le sophisme systemd

plop,

Pour commencer à préparer la progression vers vendredi en douceur, j'ai traduit ce post de Leszek Urbanski sur systemd, qui dissertait en mai 2011 en les problèmes qu'il peut poser sur serveurs. Posté en ces lieux avec l'aimable autorisation de l'auteur (de l'article, par la suite le mot auteur, au sein de la traduction, désignera l'auteur de systemd).

C'est parti :

Le sophisme systemd

(…) So, get yourself a copy of The Linux Programming Interface, ignore everything it says about POSIX compatibility and hack away your amazing Linux software. It’s quite relieving!

– Lennart Poettering @ fosdem.org

systemd est erroné sur tellement de points que je ne sais pas par où commencer. Son erreur de conception la plus importante est peut-être qu’il a été conçu avec un mépris flagrant pour les serveurs. Le manifeste de l’auteur ainsi que la série « systemd pour les admins » fournissent un bon aperçu de ses motivations pour la conception de systemd.

Il s’étend encore et encore sur la façon dont vous pouvez gagner quelques secondes ici et là par le démarrage des services en parallèle et en différé - systemd a d’ailleurs une fonction permettant de mesurer le temps de démarrage du système. La question est : qui s'en soucie ? Les utilisateurs de bureau, oui. Les utilisateurs d’embarqué, peut-être. Les utilisateurs de serveurs ? Non. Il importe peu qu’un serveur démarre en 96,3 secondes au lieu de 33,1. Ce qui compte c’est qu’il reste en fonctionnement et qu’il ne soit pas trop lourd à maintenir.

Alors, comment sont atteints les objectifs de systemd ? Simplement, en jetant les paradigmes bien éprouvés d’Unix par la fenêtre et en le revendiquant clairement. Oui, Unix a été conçu il y a 42 ans. Et non, il n’est pas cassé. Je ne suis pas un traditionaliste pur et dur et je ne suis même pas réticent à adopter de nouvelles solutions, mais Unix reste la conception d’OS pour serveur ayant le plus de succès au monde pour une raison – et est encore utilisé aujourd'hui sous des formes diverses, après ces 42 ans. C'est simple, élégant et ça marche. Le pilier de sa conception, c'est la simplicité et la modularité. Un programme pour une tâche ; une interconnexion facile entre les programmes. Et pourtant il faudrait que nous jetions tout cela pour quelque chose de neuf et qui brille.

Un des objectifs de conception de systemd est de se débarrasser de scripts shell dans le processus de démarrage et … de tout réécrire en C, vu que l'auteur ne semble pas être très friand que grep soit appelé 77 fois et awk 92 lors de son initialisation du système. Mais pourquoi avons-nous des scripts shell dans le processus de démarrage ? Ils sont simples. Ils sont faciles à lire. Tout admin Un*x un tant soit peu compétent connait au moins les bases du scripting shell. Cela permet un contrôle pratiquement total du processus de démarrage complet et n’importe quoi peut être changé en quelques secondes. Bien sûr, on peut affirmer que c'est presque aussi facile de changer le code C de systemd, recompiler et réinstaller. Je vais vous confier un petit secret : quand avez-vous typiquement besoin de changer quelque chose dans le processus de démarrage ? Quand quelque chose fonctionne mal. Peu importe que vous soyez confortablement installé à votre bureau devant 3 écrans 30" ou dans les tranchées au data center après une nuit horrible – vous devez corriger le problème au plus vite. La dernière chose que vous voulez et d’avoir à instrumenter, débugger, et reconstruire du code C au cœur de votre OS.

Le second objectif de conception semble être une complexité intentionnelle incroyable et injustifiée. Le processus le plus important dans l’espace utilisateur est censé être propre, petit et efficace. Jetons un coup d'œil à ce que systemd est censé superviser :

	le redémarrage des processus après leur crash. sysvinit ne le fait pas et nous n'avons pas restartd ou mille autres programmes pour cela !

	la collecte d'informations sur les plantages des démons. Aujourd'hui la plupart des démons possèdent leurs propres formats de rapport de crash, syslog, stderr, directement dans les fichiers journaux au format texte, des dumps binaires, etc. Bonne chance pour imposer aux auteurs de se conformer à une norme unique. Et bonne chance pour tous les cas aux limites.

	garder le contrôle (par l'intermédiaire cgroups) sur les processus détachés de leurs parents. Mais pour cela nous avons déjà, … cgroups ?

	démarrage du service à la demande / retardé (NDT : l’inspiration c’est services.msc ?). « Sur la plupart des machines où sshd peut être à l’écoute quelqu’un s’y connecte genre tous les deux mois » déclare l’auteur. Sur un poste de travail – peut-être. Combien de RAM allez-vous économiser en retardant le démarrage de quelques démons ? S’ils sont inutilisés, ils vont être swappés de toute façon. Afin de pourvoir à la demande de démarrage des services réseau, encore une autre fonctionnalité déjà disponible ailleurs a dû être mise en œuvre dans systemd : inetd.

	la gestion des dépendances entre services. Pour l'auteur, il y a de la redondance dans la gestion des dépendances entre services. Le problème est que tout processus de démarrage est basé sur des dépendances. Pensez aux services et non aux processus. Vos services dépendent de ce que leurs systèmes de fichiers aient été montés, les systèmes de fichiers dépendent de l’initialisation des périphériques sous-jacents, et ainsi de suite. Nous avions déjà une gestion rudimentaire des dépendances entre services dans System V ! S31fancyd et S31foobar dépendait de S30whatsit. Lors de l’arrêt, seulement lorsque K10foobar et K10fancyd étaient arrêtés le système pouvait procéder à K20whatsit. Contrairement aux ordinateurs de bureau, le temps de démarrage des serveurs se mesure entre le moment ou vous appuyez sur le gros bouton rouge et le moment où le serveur fournit réellement tous ses services. En d’autres termes, lorsque vous attendez, qui se soucie si c’est en parallèle ou en série ? Il importe peu si par exemple ftpd est autorisé à démarrer avant que /home/ftp ne soit monté et que des fichiers puissent être servis. En outre, un administrateur peut choisir de stopper S30whatsit sans stopper S31 fancyd – et il ou elle sait probablement ce qu’ils fabriquent. Il est plus difficile de forcer des actions sur les services avec systemd : on finit toujours par se battre contre ses décisions.

	systemd crée des points de montage autofs et démarre des démons avant que leurs systèmes de fichiers ne soient disponibles (évidemment, les opérations de fs vont de bloquer jusque-là). Cela semble horrible, non ? Cela va être un cauchemar d’administration. Il n'y a pas moyen de faire de l’autofs correctement. Si quelque chose va mal avec l’ES sous-jacent ou autofs proprement dit, vous vous retrouvez avec un système inutilisable. Même sous Solaris, qui a sans doute la mise en œuvre la plus robuste d’une implémentation d’automounter. Intégrer autofs dans le PID 1 et le processus de démarrage (et mettre les services en attente là-dessus) garantit des problèmes.

	l'écoute de modifications sur le matériel introduit des problèmes potentiels de stabilité et de sécurité – et il y a déjà des choses qui fonctionnent (plus ou moins) avec les événements matériels.

	la communication via D-Bus. D-Bus est très orienté bureautique. Il ne s'appelle pas « bus de bureau » (NDT : Desktop Bus) pour rien. Il est conçu pour la portabilité - et non la vitesse, la fiabilité ou la simplicité. Il existe des dizaines de protocole d’IPC et de passage de messages simples et robustes, mais D-Bus est de loin l’un des plus compliqués, peut-être uniquement après CORBA/IIOP. Au lieu de laisser cette abomination mourir, ou du moins la laisser confinée au bureau, D-Bus va être intégré au processus de démarrage. Les développeurs de démons sont incités à l’utiliser. Mettons le dans le noyau tant qu’on y est.

systemd est trop compliqué et farci de fonctionnalités inutiles, presque comme si quelqu'un essayait de mettre en œuvre un second noyau en espace utilisateur. On dirait qu'il a été conçu par quelqu'un qui n'a jamais vu autre chose que son propre poste de travail. C'est un exercice gentil dans les systèmes d’autogestion, avec son approche fourre-tout ça mérite sans doute d’y jeter un œil pour les fournisseurs de bureautique/embarqué en tant qu’alternative à SystemV ou à un système d’initialisation fait maison, mais c’est tout.

Le processus de démarrage de l’espace utilisateur de Linux devrait être passé en revue et nettoyé dans la plupart des distributions importantes, et peut-être même être normalisé (ou non – nous avons actuellement quatre système de démarrage majeurs pour l’espace utilisateur, tous dans des distributions majeures – un peu de diversité est en réalité bienvenue).

Toutefois, systemd n'est pas la voie à suivre. Il nous ferait reculer d’une décennie. Espérons que cela n'accroche pas - tout comme upstart ou la première mise en œuvre de devfs en 2000. Il n'est guère surprenant de voir combien les gens sont près à suivre aveuglement - systemd offre beaucoup de belles promesses. Avec le soutien financier de Red Hat et toute la propagande (je n'ose même pas appeler cela de la Relation Publique), cela va être un combat ardu, mais rappelez-vous: après tout, upstart a intégré Ubuntu; devfs est même entré dans le noyau. Tout espoir n'est pas perdu.

--> Post original en anglais

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

