

Journal NixOS vs Guix System, premiers pas

Posté par nokomprendo (site web personnel) le 03 décembre 2020 à 00:53.
Licence CC By‑SA.

Étiquettes :

	nixos

	guix

	nix

[image:]

Sommaire

	
Installer le système
	NixOS

	Guix System

	
Mettre à jour le système
	NixOS

	Guix System

	
Installer des logiciels
	Nix

	Guix

	
Quelques fonctionnalités pour développer
	Projet d'exemple

	Nix

	Guix

	Conclusion

NixOS et Guix System sont des distributions Linux basées sur des gestionnaires de paquets utilisant une approche fonctionnelle (Nix et GNU Guix). Cette approche permet de gérer des environnements logiciels reproductibles et composables, ce qui est très pratique pour un développeur ou pour un administrateur système.

Cet article ne compare pas vraiment NixOS et Guix System mais présente, pour les deux solutions, comment installer le système, le configurer et l'utiliser pour développer. L'idée est plutôt d'aider un utilisateur de l'un à découvrir l'autre, et vice et versa.

Voir aussi : video youtube - video peertube - article de blog

Installer le système

NixOS

NixOS nécessite une installation manuelle (voir le manuel NixOS ou cet article de blog). Celle-ci n'est pas compliquée mais un peu fastidieuse. Il s'agit notamment de :

	
télécharger l'image ISO et booter dessus

	préparer les partitions

	générer et éditer la configuration du système à installer

	lancer l'installation et rebooter sur le système installé

Guix System

Guix System propose un installeur semi-graphique très pratique (voir le manuel de référence GNU Guix). Ainsi l'installation se résume à :

	
télécharger l'image ISO, la décompresser et booter dessus

	suivre les étapes de l'installeur

	lancer l'installation et rebooter sur le système installé

Mettre à jour le système

Les deux solutions fonctionnent de façon très similaire :

	un update télécharge des dernières versions des paquets (sans les installer)

	un fichier définit la configuration du système

	un rebuild reconstruit le système (installe les nouveaux paquets ou la nouvelle configuration système)

NixOS

	update :

$ sudo nix-channel --update

	rebuild (utilise le channel du root) :

$ sudo nixos-rebuild switch

	exemple de fichier de configuration /etc/nixos/configuration.nix :

{ config, pkgs, ... }: {

 imports = [./hardware-configuration.nix];

 boot.loader.grub = {
 enable = true;
 device = "/dev/sda";
 version = 2;
 };

 i18n.defaultLocale = "fr_FR.UTF-8";
 system.stateVersion = "20.09";
 time.timeZone = "Europe/Paris";

 console = {
 font = "Lat2-Terminus16";
 keyMap = "fr-bepo";
 };

 environment.systemPackages = with pkgs; [vim];

 networking = {
 hostName = "mynixos";
 useDHCP = false;
 interfaces.enp0s3.useDHCP = true;
 };

 services = {
 xserver = {
 enable = true;
 layout = "fr";
 displayManager.lightdm.enable = true;
 desktopManager.xfce.enable = true;
 };
 };

 users.users.toto = {
 isNormalUser = true;
 extraGroups = ["wheel"];
 };
}

Guix System

	update :

$ guix pull

	rebuild (utilise le PATH courant) :

$ sudo guix system reconfigure /etc/config.scm

	exemple de fichier de configuration /etc/config.scm :

(use-modules (gnu) (gnu packages vim) (gnu packages admin) (gnu packages certs))
(use-service-modules desktop networking ssh xorg)

(operating-system
 (locale "fr_FR.utf8")
 (timezone "Europe/Paris")
 (keyboard-layout (keyboard-layout "fr" "bepo"))
 (host-name "myguix")

 (users (cons* (user-account
 (name "toto")
 (comment "Toto")
 (group "users")
 (home-directory "/home/toto")
 (supplementary-groups '("wheel" "netdev" "audio" "video")))
 %base-user-accounts))
 (packages
 (append
 (list vim htop nss-certs)
 %base-packages))
 (services
 (append
 (list (service xfce-desktop-service-type)
 (set-xorg-configuration
 (xorg-configuration (keyboard-layout keyboard-layout))))
 %desktop-services))
 (bootloader
 (bootloader-configuration
 (bootloader grub-bootloader)
 (target "/dev/sda")
 (keyboard-layout keyboard-layout)))
 (file-systems
 (cons* (file-system
 (mount-point "/")
 (device (uuid "ad23de44-8331-487f-b86f-8a5f940bd702" 'ext4))
 (type "ext4"))
 %base-file-systems)))

Installer des logiciels

Les deux systèmes permettent à un utilisateur standard de gérer ses logiciels (installer, supprimer, rollbacks…).

Nix

	chercher un logiciel :

$ nix search geany

* nixpkgs.geany (geany)
 Small and lightweight IDE
...

	installer un logiciel :

$ nix-env -iA nixos.geany

installing 'geany-1.36'
...

	lister les logiciels installés :

$ nix-env -q

geany-1.36
...

	désinstaller un logiciel :

$ nix-env -e geany

uninstalling 'geany-1.36'

	lister les générations :

$ nix-env --list-generations

 72 2020-11-28 19:31:13
 73 2020-12-02 21:18:48 (current)

Guix

	chercher un logiciel :

$ guix search geany

name: geany
version: 1.37
...

	installer un logiciel :

$ guix install geany

Le paquet suivant sera installé :
 geany 1.37
...

	lister les logiciels installés :

$ guix packages --list-installed

geany 1.37 out /gnu/store/bsffsj4iqaq0f14m8zpds81gklrs0n4x-geany-1.37
...

	désinstaller un logiciel :

$ guix remove geany

Le paquet suivant sera supprimé :
 geany 1.37

	lister les générations :

$ guix packages --list-generations

Génération 6 02 déc. 2020 19:14:03
 + geany 1.37 out /gnu/store/bsffsj4iqaq0f14m8zpds81gklrs0n4x-geany-1.37

Génération 7 02 déc. 2020 21:50:15 (actuelle)
 - geany 1.37 out /gnu/store/bsffsj4iqaq0f14m8zpds81gklrs0n4x-geany-1.37

Quelques fonctionnalités pour développer

Nix et Guix sont très pratique pour un développeur. En gros, on ajoute un fichier de packaging à un projet et on peut ensuite lancer un environnement de développement, construire le projet, installer le projet comme un logiciel classique, etc.

Projet d'exemple

	code source C++ (myhello.cpp) :

#include <iostream>

int main() {
 std::cout << "This is myhello!" << std::endl;
 return 0;
}

	fichier de configuration cmake (CMakeLists.txt) :

project(myhello)
add_executable(myhello myhello.cpp)
install(TARGETS myhello DESTINATION bin)

Nix

	fichier de packaging (default.nix) :

{ pkgs ? import <nixpkgs> {} }:

with pkgs; stdenv.mkDerivation {
 name = "myhello";
 src = ./.;
 buildInputs = [cmake];
}

	lancer un environnement de développement (exit ou Ctrl-d pour quitter) :

$ nix-shell

[nix-shell]$ cmake -S . -B build
...

$ cmake --build build
...

$./build/myhello
This is hello!

	construire le projet (penser à supprimer le dossier build avant) :

$ nix-build
...

$./result/bin/myhello
This is hello!

	installer le projet :

$ nix-env -f . -i
...

$ myhello
This is hello!

Guix

	fichier de packaging (myhello.scm) :

(define-module (myhello)
 #:use-module (guix gexp)
 #:use-module (guix packages)
 #:use-module (gnu packages cmake)
 #:use-module (guix build-system cmake))

(define-public myhello
 (package
 (name "myhello")
 (version "0.1")
 (source (local-file "" #:recursive? #t))
 (build-system cmake-build-system)
 (arguments '(#:tests? #f))
 (synopsis "myhello synopsis")
 (description "myhello description")
 (home-page "http://www.example.org")
 (license #f)))

	lancer un environnement de développement (exit ou Ctrl-d pour quitter) :

$ guix environment --load-path=. myhello
...

[env]$ cmake -S . -B build
...

	construire le projet :

$ guix build --load-path=. myhello
...
/gnu/store/pxl4lx7h01a7mpn7ddqyp2r4xbdyhaxy-myhello-0.1

$ /gnu/store/pxl4lx7h01a7mpn7ddqyp2r4xbdyhaxy-myhello-0.1/bin/myhello
This is hello!

	installer le projet :

$ guix install --load-path=. myhello
...

$ myhello
This is hello!

Conclusion

Nix et Guix sont tous les deux inspirés des travaux de thèse de Eelco Dolstra (modèle de déploiement logiciel purement fonctionnel). Si la mise en œuvre diffère dans ces deux projets (implémentations, langages, etc), certaines fonctionnalités de base y sont assez similaires.

Bien-sûr, cet article n'a fait qu'effleurer le sujet. Nix et Guix ont beaucoup d'autres fonctionnalités, et c'est sur ces fonctionnalités plus avancées que les deux projets vont certainement se différencier.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

