

Journal Gérer son environnement utilisateur NixOS, avec Home-manager


Posté par nokomprendo (site web personnel) le 11 novembre 2019 à 22:19.
Licence CC By‑SA.

Étiquettes :

	home-manager

	nix

	firefox

	nixos

	linux











[image: ]



Sommaire


	Présentation de home-manager

	Installation

	Premier exemple de configuration utilisateur

	Séparer les fichiers de configuration

	Configurer des logiciels utilisateurs

	Configurer l'environnement de bureau

	Gérer des "dot files"

	Utiliser les overlays et cachix

	Conclusion



Home-manager est un outil qui permet de gérer son environnement utilisateur : environnement de bureau, thème de fenêtre, thème d'icones, logiciels, paramètres des logiciels, services utilisateur, "dot files"…  


Home-manager est prévu pour fonctionner sur la distribution linux NixOS et utilise le gestionnaire de paquets Nix.


code source - vidéo youtube - vidéo peertube

Présentation de home-manager


Pour faire simple, le but de home-manager est de fournir l'équivalent du fichier /etc/nixos/configuration.nix mais pour l'environnement utilisateur (au lieu de l'environnement système). Plus précisemment, l'utilisateur décrit sa configuration via un fichier ~/.config/nixpkgs/home.nix et lance une commande home-manager pour construire et installer la configuration correspondante. 


Home-manager est capable de gérer finement l'environnement logiciel. Il permet non seulement d'indiquer l'environnement de bureau, les logiciels et les services à installer mais également de paramètrer tous ces éléments. Par exemple, home-manager peut configurer le user.name de git, les extensions de firefox, la police de caractères de vscode…


Attention, home-manager n'est pas un outil officiel de Nix. Il est encore en développement, et donc incomplet. Enfin, il est prévu pour NixOS; son fonctionnement sur une autre distribution n'est pas garanti.


Voir le site officiel de home-manager et le wiki NixOS.

Installation


Home-manager est fourni dans les dépôts de paquets de Nix. Il est donc très simple à installer :


$ nix-env -iA nixos.home-manager

Premier exemple de configuration utilisateur


Le point d'entrée d'une configuration home-manager est le fichier ~/.config/nixpkgs/home.nix. Par exemple, le fichier suivant installe les logiciels geany, meld et vlc, et configure le clavier en français bépo.


{ pkgs, ... }: {
  home.packages = with pkgs; [
    geany
    meld
    vlc
  ];
  home.keyboard = {
    layout = "fr";
    variant = "bepo";
  };
}


Home-manager est documenté dans les pages man. Pour connaitre les options de configuration disponibles, il suffit de lancer :


$ man home-configuration.nix


Enfin, pour installer ou mettre à jour la configuration, on lance la commande :


$ home-manager switch

Séparer les fichiers de configuration


Pour éviter d'avoir un gros fichier home.nix difficile à lire, on peut le découper en plusieurs fichiers. Par exemple, on peut mettre les logiciels à installer dans un fichier ~/.config/nixpkgs/packages.nix :


{ pkgs, ... }: {
  home.packages = with pkgs; [
    geany
    meld
    vlc
  ];
}


et importer ce fichier dans le ~/.config/nixpkgs/home.nix : 


{ pkgs, ... }: {
  imports = [
    ./packages.nix
  ];
  home.keyboard = {
    layout = "fr";
    variant = "bepo";
  };
}

Configurer des logiciels utilisateurs


Home-manager permet de régler les paramètres de certains programmes. Par exemple, on peut ajouter le code suivant dans le home.nix pour installer firefox et bash (avec des alias shell) :


  programs = {
    firefox.enable = true;
    bash = {
      enable = true;
      shellAliases = {
        ll = "ls -lh";
        la = "ls -a";
      };
    };
  };


Autre exemple, on peut configurer git dans un fichier git.nix, que l'on importera dans home.nix :


{ pkgs, ... }: {
  programs.git = {
    enable = true;
    userName = "nokomprendo";
    userEmail = "nokomprendo@example.com";
    ignores =  [
      "*~"
      "*.swp"
    ];
}


Après mise-à-jour, le client git est configuré :


$ home-manager switch
...

$ git config --get user.name
nokomprendo

Configurer l'environnement de bureau


Home-manager peut configurer le thème de fenêtre et le thème d'icones. Par exemple, pour un thème "dark" :


  gtk = {
    enable = true;
    iconTheme = {
      name = "Adwaita";
      package = pkgs.gnome3.adwaita-icon-theme;
    };
    theme = {
      name = "Shades-of-gray";
      package = pkgs.shades-of-gray-theme;
    };
  };
  qt = {
    enable = true;
    platformTheme = "gtk";
  };


Home-manager peut également configurer finement certains environnements de bureau.  Par exemple, avec i3 :


  xsession.enable = true;
  xsession.windowManager.i3 = {
    enable = true;
    config = let mod = "Mod4"; in {
      fonts = [ "DejaVu Sans 12" ];
      modifier = mod;
      keybindings = pkgs.lib.mkOptionDefault {
        "${mod}+m" = "exec ${pkgs.i3lock}/bin/i3lock -n -c 000000";
      };
    };
  };


Penser, dans ce cas, à activer le paquet dconf du service dbus, dans /etc/nixos/configuration.nix :


  services.dbus.packages = [ pkgs.gnome3.dconf ];

Gérer des "dot files"


Home-manager suit le fonctionnement habituel de Nix. Par exemple, quand on configure bash dans le home.nix (cf précédemment), Nix crée un fichier de configuration .bashrc dans le /nix/store et ajoute un lien symbolique dans le dossier utilisateur :


$ ll ~/.bashrc 
lrwxrwxrwx 1 toto users 70 11 nov.  15:48 /home/toto/.bashrc -> /nix/store/z2arwbwyhvvwhy2caazlxasw5jnscyg3-home-manager-files/.bashrc


Cependant, home-manager peut également gérer des "dot files" classiques.  Par exemple, on peut centraliser des "dot files" dans le dossier ~/.config/nixpkgs/ et demander à home-manager de les gérer, via le home.nix (il va alors les copier dans le /nix/store et créer les liens symboliques) :


  home.file.".i3status.conf".source = ./i3status.conf;

Utiliser les overlays et cachix


Comme home-manager est basé sur Nix, on peut utiliser les outils Nix classiques, comme les overlays ou cachix.


Par exemple, on peut empaqueter le plugin Vim minibufexpl en ajoutant un fichier dans le dossier ~/.config/nixpkgs/overlays/ :


self: super: {
  vimPlugins = super.vimPlugins // {
    minibufexpl = super.vimUtils.buildVimPluginFrom2Nix { 
      name = "minibufexpl.vim-2013-06-16";
      src = self.fetchgit {
        url = "https://github.com/fholgado/minibufexpl.vim";
        rev = "ad72976ca3df4585d49aa296799f14f3b34cf953";
        sha256 = "1bfq8mnjyw43dzav8v1wcm4rrr2ms38vq8pa290ig06247w7s7ng";
      };
      dependencies = [];
    };
  };
}


On peut ensuite utiliser ce plugin dans notre configuration Vim. Si on a déjà empaqueté ce plugin sur une autre machine et envoyé le paquet binaire sur un dépôt cachix, on peut utiliser ce cache et éviter de reconstruire le paquet :


$ cachix use nokomprendo
Configured https://nokomprendo.cachix.org binary cache in /home/toto/.config/nix/nix.conf

$ home-manager switch
...
copying path '/nix/store/2pkqy6nv5vmqq6cw7zhyd44qw7vigg4l-vimplugin-minibufexpl.vim-2013-06-16' from 'https://nokomprendo.cachix.org'...
...

Conclusion


Home-manager est un outil basé sur Nix et qui permet de configurer son environnement utilisateur. Le projet est encore en développement mais il est déjà très exploitable, s'intègre bien avec l'écosystème Nix et apporte des fonctionnalités intéressantes : spécifier et paramétrer l'environnement de bureau, les thèmes et les logiciels, gérer des "dot files" classiques, utiliser des overlays, utiliser cachix, etc.





EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

