

Journal TapTempo en Scala

Posté par martoni (site web personnel, Mastodon) le 23 juillet 2018 à 21:34.
Licence CC By‑SA.

Étiquettes :

	taptempo

	scala

[image:]

Le sujet TapTempo est très intéressant pour apprendre un nouveau langage de programmation. En effet, il est beaucoup plus complet qu'un simple Hello World ! Il nous impose de se plonger dans les arcanes du langage et de ses outils pour gérer le temps, l'affichage mais aussi les arguments de la ligne de commande ou les structures «complexe» comme les listes ou les buffers.

Bon évidemment, quand il s'agit d'un langage de description hardware comme présenté la dernière fois avec Chisel on évite la ligne de commande ! Par contre, Chisel étant basé sur le langage Scala, il est intéressant de se plonger dedans histoire de le maitriser un minimum.

Voici donc mon humble version de TapTempo en Scala. Langage étrange au paradigme bipolaire (;)) : Fonctionnel et Objet. Ce langage a déjà été décrit dans les colonnes de LinuxFR, il est basé sur une machine virtuelle Java et permet d'appeler les classes et fonctions de ce même langage. Et j'ai appris récemment que la réciproque est également vraie : On peut appeler les classes/fonctions Scala en Java.

 // TapTempo
 import jline.console.ConsoleReader /* to read keyboard */
 import scala.collection._
 import sys.process._ /* shell cmd execution with ! */

 val VERSION = "1.0"
 val PRECISION = 0
 val PRECISIONLIST = List("%.00f", "%.01f", "%.02f", "%.03f", "%.04f", "%.05f")
 val RESET_TIME = 5
 val SAMPLE_SIZE = 5
 val SECOND = 1e9
 val MIN = 60*SECOND

 object TapTempo {
 def usages() {
 println("-h, --help affiche ce message d'aide")
 println("-p, --precision changer le nombre de décimale du tempo à afficher")
 println(" la valeur par défaut est 0 décimales, le max est 5 décimales")
 println("-r, --reset-time changer le temps en seconde de remise à zéro du calcul")
 println(" la valeur par défaut est 5 secondes")
 println("-s, --sample-size changer le nombre d'échantillons nécessaires au calcul du tempo")
 println(" la valeur par défaut est 5 échantillons")
 println("-v, --version afficher la version")
 }

 def printversion() {
 println("TapTempo Scala version " + VERSION)
 }

 def tempo(tfifo: mutable.Buffer[Double]):Double = {
 var sum = 0.0
 tfifo.foreach(sum += _)
 sum/tfifo.length
 }

 def main(args: Array[String]) {
 val arglist = args.toList
 type OptionMap = Map[Symbol, Int]

 /****************/
 /* parsing args */
 /****************/
 def nextOption(map : OptionMap, list: List[String]) : OptionMap = {
 def isSwitch(s : String) = (s(0) == '-')

 list match {
 case Nil => map
 case ("-h" | "--help") :: tail => usages(); sys.exit(0)
 case ("-v" | "--version") :: tail => printversion; sys.exit(0)
 case ("-p" | "--precision") :: value :: tail =>
 nextOption(map ++ Map('precision -> value.toInt), tail)
 case ("-r" | "--reset-time") :: value :: tail =>
 nextOption(map ++ Map('rtime -> value.toInt), tail)
 case ("-s" | "--sample-size") :: value :: tail =>
 nextOption(map ++ Map('ssize -> value.toInt), tail)

 case option :: tail => println("Unknown option " + option)
 sys.exit(0)
 }
 }
 val options = nextOption(Map(), arglist)

 var precision = options.getOrElse('precision, -1)
 if(precision < 0 || precision > 5)
 precision = PRECISION
 var rtime = options.getOrElse('rtime, -1)
 if(rtime == -1)
 rtime = RESET_TIME
 var ssize = options.getOrElse('ssize, -1)
 if(ssize == -1)
 ssize = SAMPLE_SIZE

 /* Minimum caracters for completed read */
 (Seq("sh", "-c", "stty -icanon min 1 < /dev/tty") !)
 /* Do not print input caracters */
 (Seq("sh", "-c", "stty -echo < /dev/tty") !)

 var timefifo = mutable.Buffer.fill[Double](ssize)(0.0)
 var fifocount = 0

 println("Appuyer sur une touche en cadence (q pour quitter).")
 var c = 0
 var i = 0
 var current_time = System.nanoTime()
 var old_time = System.nanoTime()
 do {
 c = Console.in.read
 current_time = System.nanoTime()
 val tempotime = MIN/(current_time - old_time)
 if(tempotime < 60/rtime){
 fifocount = 0
 }
 if(fifocount < ssize){
 fifocount += 1
 }

 timefifo(i) = tempotime
 i = (i + 1) % ssize

 if(fifocount == ssize){
 printf("Tempo : " + PRECISIONLIST(precision) + "\n", tempo(timefifo))
 } else {
 printf("Tempo : %d/%d\n", fifocount, ssize)
 }

 old_time = current_time
 } while (c != 113) // While 'q' is pressed
 println("Bye Bye!")
 }

 }

 TapTempo.main(args)

Voila voila, le programme est également disponible sur mon github (oui oui je sais çémal). Ce petit exercice m'a permis de découvrir un peu plus de ce langage suisse très prisé du monde de la finance.

Mais il y a encore du chemin pour le maîtriser.

À oui j’oubliai, pour le lancer en tant que script faire :

$ scala -nc TapTempo.sc

Patienter un certain temps — hé oui on parle quand même d'une machine virtuel java et de compilation de bytecode, çélong ! — puis taper la touche de votre choix, 'q' pour quitter.

Appuyer sur une touche en cadence (q pour quitter).
Tempo : 1/5
Tempo : 2/5
Tempo : 3/5
Tempo : 4/5
Tempo : 152
Tempo : 186
Tempo : 195
Tempo : 164
Tempo : 159
Tempo : 162
Tempo : 157
Tempo : 156
Tempo : 159
Bye Bye!

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars223029000avatar.jpg

