

Journal Une installation hi-fi de qualitay avec le Raspberry Pi (Arch, Pulseaudio, Shairport, trolls inside)


Posté par kursus_hc le 21 octobre 2014 à 17:22.
Licence CC By‑SA.

Étiquettes :

	audio

	xbmc

	dlna

	pulseaudio

	ampli

	htpc

	hifi











[image: ]



Sommaire


	
	J'ai quoi à la fin ?

	Le matos

	On installe Arch

	Configuration de base

	Configuration Alsa

	Configuration Pulseaudio

	Installation et configuration Shairport

	Intégration à systemd

	Activer systemd --user

	Et violà !





Bonjour,


Aujourd'hui on va s'amuser avec le Raspberry Pi pour en faire une petite borne audio qui fera de nombreux jaloux dans vos soirées mondaines. Mais pas que ça, et c'est bien l'intérêt de la baser sur Arch, vous aurez en parallèle toute la flexibilité pour installer les autres projets qui vous chantent (au hasard : XBMC, Retropie, etc). 


Comprendre : vous pourriez obtenir plus ou moins la même chose avec plusieurs cartes SD flashées avec différentes iso spécialisées sous Raspbian, sauf que là vous avez tout sur un seul système, en bleeding edge (désolé pas de traduction) sans avoir besoin de redémarrer pour changer d'activité. 


Ainsi Volumio ou PiMusicBox sont de bonnes alternatives pour qui veut écouter de la musique avec son RPi sans se prendre la tête, et donc sans suivre ce tuto. Notez que ces distributions proposent un serveur MPD, ce qui n'est pas abordé dans ce tuto (il faut bien que Pulseaudio serve à quelque chose). 

J'ai quoi à la fin ?



	Un Raspberry Pi branché à vos enceintes

	Un serveur Pulseaudio qui permet à tous les postes sous Linux/Pulseaudio d'envoyer leurs flux

	Un récepteur Airplay (audio) pour envoyer du son depuis Mac OS / iOS / Android 

	Rien pour Windows

	Une qualité sonore au top (bon au moins non dégradée)

	Une fiabilité plus que correcte

	Une automatisation totale (tout est prêt au boot) 

	Un système Arch standard pour toutes vos envies futures


Le matos



	Bon ben un Pi 

	Une alimentation correcte, de type 5V 2A ou 2.5A 

	Une carte SD performante (classe 10 tant qu'à faire)

	Un DAC USB, la sortie audio du Pi n'étant vraiment pas terrible (11 bits, souffle, claquement au démarrage et à l'extinction)

	Un hub USB alimenté, le Pi ayant un peu de mal à gérer sur la longueur tout ce qui consomme plus qu'un clavier. Sans vouloir faire de pub, ThePiHut propose un bon hub 7 ports spécialement adapté (sans "backpower" pouvant endommager votre Pi si vous n'êtes pas très chanceux). 


Normalement vous vous en sortez pour moins de 100€. 

On installe Arch


Outre le fait d'être l'une des deux seules distributions mère à être réellement maintenue pour le Pi avec Raspbian (Debian Stable), et donc la seule à être vraiment à jour, Arch Linux est également à remercier pour la formidable qualité de son wiki. J'hésite donc à faire un copier coller de la manip, mais vu qu'elle diffère d'un simple dd et qu'en plus je fais ce que je veux dans mon journal, la voici en version courte pour une carte SD sur /dev/sdb : 


En root : 



fdisk /dev/sdb

o

p

n

p

1

ENTER

+100M

ENTER

t

c

n

p

2

ENTER

ENTER

w




Puis 



mkfs.vfat /dev/sdb1 && mkdir boot && mount /dev/sdb1 boot && mkfs.ext4 /dev/sdb2 && mkdir root && mount /dev/sdb2 root && wget http://archlinuxarm.org/os/ArchLinuxARM-rpi-latest.tar.gz && bsdtar -xpf ArchLinuxARM-rpi-latest.tar.gz -C root && sync && mv root/boot/* boot && umount boot root 




On peut ensuite insérer sa carte dans le Pi et le brancher. 

Configuration de base


On modifie le mot de passe root (par défaut "root") : 



passwd root 




On ajoute un utilisateur : 



useradd -m -g users -G wheel -s /bin/bash pi

passwd pi




On met à jour sa distrib :



pacman -Suy




On installe quelques trucs : 



pacman -S git binutils arm-mem-git pulseaudio alsa-plugins alsa-firmware alsa-tools  alsa-utils pulseaudio-alsa


reboot 




On remplace Vi par nano (Arch ayant une certaine tendance à forcer l'utilisation de Vi - par exemple pour Cron) : 



pacman -Rns vi

ln -s /usr/bin/nano /usr/bin/vi



Configuration Alsa


On blackliste le module audio du Pi pour laisser le champ libre au DAC : 



nano /etc/modules-load.d/raspberrypi.conf




#snd-bcm2835


On force l'id du DAC dans Alsa :



nano /etc/modprobe.d/alsa-base.conf




options snd-usb-audio index=0


On donne quelques consignes à Alsa pour s'intégrer comme il faut avec Pulseaudio : 



nano /etc/asound.conf




    pcm.!default {
      type pulse
      fallback "sysdefault"
      rate_converter "samplerate_best" 
      hint {
        show on
        description "Default ALSA Output (currently PulseAudio Sound Server)"
      }
    }

   ctl.!default {
     type pulse
      fallback "sysdefault"
    }

    defaults.pcm.dmix.!rate 44100

Configuration Pulseaudio


Deux enjeux ici : lancer Pulseaudio en mode session (car le mode système c'est le mal) et le faire travailler en "real time", au plus près du noyau. 


On ajoute des groupes à notre utilisateur : 



groupadd pulse-rt

usermod -aG pulse-rt pi

usermod -aG audio pi




On modifie les droits du groupe : 



nano /etc/security/limits.conf




En ajoutant tout en bas : 


@pulse-rt       hard nice -20
@pulse-rt       soft nice -20


Et en modifiant ce qui existe pour @audio : 


@audio          -       rtprio          99
@audio          -       nice           -19
@audio          -       memlock         unlimited


Quelques réglages dans Pulseaudio : 



nano /etc/pulse/default.pa 




### Automatically load driver modules depending on the hardware available
#.ifexists module-udev-detect.so
#load-module module-udev-detect
#.else
### Use the static hardware detection module (for systems that lack udev support)
#load-module module-detect
#.endif
load-module module-alsa-card device_id=0 tsched=true tsched_buffer_size=2048576 tsched_buffer_watermark=262144


Les valeurs tsched_buffer_size et tsched_buffer_watermark sont à modifier si vous essuyez de l'audio déformé ou une trop grosse latence. La doc sur le sujet étant inexistante j'avoue ne pas avoir une vraie idée des réglages optimaux. 


### Network access (may be configured with paprefs, so leave this commented
### here if you plan to use paprefs)
#load-module module-esound-protocol-tcp
load-module module-native-protocol-tcp auth-ip-acl=127.0.0.1;192.168.0.0/24 auth-anonymous=1
load-module module-zeroconf-publish


Ici on profite d'avoir une distribution moderne pour virer le protocole legacy, puis on ajoute les autorisations pour que les autres Pulseaudio du réseau puissent se connecter.


Enfin on peut aussi désactiver les modules inutiles, comme tout ce qui touche à Jack et qui ont tendance à se charger alors qu'on en veut pas :


### Automatically connect sink and source if JACK server is present
#.ifexists module-jackdbus-detect.so
#.nofail
#load-module module-jackdbus-detect channels=2
#.fail
#.endif

Installation et configuration Shairport


Shairport est une implémentation rétro-ingénérée de Airplay, le protocole Apple. Le but est de démarrer Shairport au boot, qui appellera et démarrera Pulseaudio tout seul comme un grand (via l'option Pulseaudio autospawn, configurée sur "yes" par défaut).  


Compilation et installation :



git clone https://github.com/abrasive/shairport.git shairport

./configure && make && sudo cp shairport /opt/shairport && sudo chmod a+x /opt/shairport 



Intégration à systemd


Ici on va tenter de lancer Shairport au boot via systemd en mode --user (par l'utilisateur Pi dans notre cas). Pourquoi ne pas passer par un service systemd classique avec l'option User= ? Parce que dans ce cas Pulseaudio est lancé en system mode et ne peut pas obtenir la bonne priorité de la part du noyau. Ne me demandez pas pourquoi, je ne sais pas. 



mkdir ~/.config/systemd && mkdir ~/.config/systemd/user && nano shairport.service




[Unit]
Description=Shairport AirTunes receiver

[Service]
ExecStart=/opt/shairport -b 90 -a Salon -o pulse
Restart=always

[Install]
WantedBy=default.target


-b définit le buffer (par défaut 200, à vous de tester ce qui va le mieux chez vous) 

-a le nom de votre borne Airplay 

-o le pilote audio à utiliser (à préciser absolument dans notre cas) 

L'option Restart=always de systemd est très pratique, Shairport pouvant parfois planter, elle vous garantira un redémarrage automatique et instantané du service. 

Activer systemd --user



systemd --user enable shairport.service

loginctl enable-linger pi 




A ce niveau il n'est pas une mauvaise idée de passer Pulseaudio en mode verbose pour s'assurer que tout va bien : 



nano /etc/pulse/client.conf 




extra-arguments = --log-target=syslog -v



reboot

journalctl _COMM=pulseaudio -b




Vous devriez voir quelque chose comme 


core-util.c: Successfully gained nice level -X
Running in system mode: no


Vous pouvez alors supprimer le mode verbose pour soulager journald : 



nano /etc/pulse/client.conf 




#extra-arguments = --log-target=syslog

Et violà !


Vous devriez déjà avoir vu apparaître votre serveur Airplay sur tous vos appareils compatibles ainsi que le "sink" Pulseaudio sur tous vos postes Linux/Pulseaudio (configurés via paprefs "make Pulseaudio network available locally" et éventuellement "make Apple Airtune network available locally"). 


En réseau Pulseaudio classique, par exemple en utilisant Spotify depuis votre portable dans la cuisine, la consommation CPU du Pi s'élève à 10%, ce qui est très satisfaisant. 

Via Shairport ce n'est pas la même chose, on tourne plutôt autour des 50%. 


Enjoy ! 




EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

