

Journal Des vieilles bases d'unix à la hype reactive actuelle

Posté par barmic le 06 mars 2018 à 16:02.
Licence CC By‑SA.

Étiquettes :
aucune

[image:]

Sommaire

	Tout est fichier

	
Le C10K problem
	Mais pourquoi ?

	La hype !

Les systèmes unix/linux sont souvent vus comme vieux et le fait de barbus. Actuellement il y a une grande hype autour de « système réactifs ». Je me propose de faire le lien entre les 2 et d'expliquer comment c'est grâce à des bases unix très vieilles que l'on peut aujourd'hui construire des systèmes réactifs.

Tout est fichier

[image: tout est fichier]

Dans unix tout est fichier. Cela se représente facilement quand on voit son système de fichier et par exemple /dev qui montre sous forme de fichier tous les périphériques de votre machine. On peut le voir autrement dans le développement système. En effet toutes les io de vos programmes sont représentés par des descripteurs de fichier. Ils sont donc manipulables comme des fichiers et vous n'avez pas besoin de savoir qu'il s'agit d'une socket, d'un pipe ou d'un fichier pour lire ou écrire dedans.

Au sein des opérations sur les descripteurs de fichier, il y en a une sur laquelle je voudrais attirer votre attention. select(2) est un appel système qui va permettre d'attendre sur plusieurs descripteurs de fichier en même temps. Par attendre, il est entendu pouvoir lire ou écrire sur ces descripteurs. Il s'agit donc d'un appel bloquant. Quand il revient il vous indique le nombre de descripteurs qui ont l'opération attendue de possible. Cela permet a un processus de manipuler plusieurs descripteurs. Pour information ça ne vient pas de sortir, d'après mon man cet appel est apparu avec 4.2BSD.

Le problème de select(2) c'est qu'il est limité dans le nombre de descripteurs qu'il scrute (actuellement la limite sur linux est fixée à 1024). Plus récemment poll(2) est apparu (normalisé pour la première fois avec POSIX.1-2001). Ce dernier prend un tableau et non plus un set de taille fixée, il n'a donc plus de limite dans le nombre de descripteurs de fichier. Il y a un super article (comme d'habitude) de Christophe Blaess sur le fonctionnement et l'implémentation dans le noyau linux.

Il existe aussi une solution plus moderne appelée epoll(4), mais elle est spécifique à linux. Une autre solution préconisée par FreeBSD, NetBSD et OpenBSD est d'utiliser les kqueue(2) Certains (comme le développeur de curl) conseillent donc d'utiliser des bibliothèques de plus haut niveau qui vont fournir une API de plus haut niveau et qui vont pouvoir choisir en fonction du système l'appel le plus intéressant.

Le C10K problem

Le C10K problem est un problème relativement général qui constate que les serveurs n'arrivent pas à dépasser une limite de 10 000 connexions simultanées quel que soit le matériel qui est dessous (une page bien détaillée bien qu'un peu vieille). Suite à l'identification de ce problème, différentes approches ont été proposées. Dont l'une qui m'intéresse plus que les autres ici : le pattern réacteur.

Il s'agit d'un pattern d'architecture. Son objectif est de démultiplexer des requêtes pour ensuite les traiter de manière synchrones et sérialisées. L'idée est simple : on a une boucle d'événements qui va attendre des requêtes et lorsqu'elle en reçoit elle va l'envoyer à l'handler approprié. Le tout de manière totalement synchrone. Ce fonctionnement est utilisé dans nginx.

[image: pattern reactor]

Nginx lance un processus master. Master lance un processus par cœur : ce sont les workers. Les workers écoutent la même socket (par exemple le port tcp 443 sur votre interface loopback). Lorsque l'on reçoit une requête, un processus va être réveillé et le faire travailler. Cette technique est devenue très efficace depuis l'introduction de l'option SO_REUSEPORT dans le noyau 3.9. On peut trouver une description plus complète sur quora.

Mais pourquoi ?

Les méthodes classiques consistent à associer une requête à un thread (voir un processus). Cette solution génère plus de fils d'exécution que de CPU. Cela entraîne une forte pression sur l'ordonnancement du noyau. Le contexte de chacun de ses fils est aussi assez coûteux. Enfin, même s'il existe des techniques pour améliorer cela la création/libération des threads est assez coûteuse. Tout cela contribue à faire exploser les serveurs avant la limite des 10k connexions.

Dans la vie quotidienne, ça augmente les ressources utilisées et la latence. Or aujourd'hui pour beaucoup de cas d'usage, c'est la latence qui est critique (l'exécution pure est fortement optimisée et on n'a pas un volume de données important). Une partie importante des évolutions de HTTP2 par exemple vont dans ce sens. On peut aussi voir une grosse part du travail fait par google sur les couches réseau du noyau linux.

Un article intéressant sur le sujet écrit par Philippe Prados : Multitâche ou réactif ?.

Pour HTTP2 l'interview en 2 parties de Dridi Boukelmoune est intéressante et dans la seconde partie il explique clairement que l'objectif, c'est la latence (partie 1 et partie 2)

La hype !

[image: hype reactive]

On peut encore aller plus loin… Tout est fichier ! On peut généraliser ce comportement ! On peut aller jusqu'à envoyer toutes les requêtes sur la même boucle d'événement. Ainsi à chaque IO, on donne éventuellement à une autre requête (ou une autre IO) la possibilité de s'exécuter. On minimise encore le temps d'attente des fils d'exécution. Cette démarche permet de tirer parti des infrastructures du noyau et de tenter de maximiser le temps d'exécution utile du CPU. Et s'adapte particulièrement bien à des logiciels qui font beaucoup d'IO (accès à des fichiers, à une ou plusieurs bases de données, à un serveur d'authentification,…) par rapport à leur temps d'exécution réel (pas d'algorithme particulièrement compliqué).

Il y a différentes implémentation de ça :

	
Node.js est la plus connue. Je pense que le fait de voir du js se hisser à ce niveau de performance a poussé à avoir des explications.

	celle que je connais le mieux : Vert.x : une suite de bibliothèques qui fournit une boucle d'évènements, des API pour un peu tout (faire du réseau, de la base de données, etc) qui sont asynchrones et s'interfacent avec la boucle d'évènements

	
POE pour perl. Ici il n'est pas question de faire des appels asynchrones classiques à base d'handler, de future ou de promesses, mais plutôt avec des yields. POE permet de changer la boucle d'évènement ce qui peut être assez pratique.

	
twisted pour python est très orienté réseau.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/4f7148a329c067773de0fbf24ed22e5b423d910a30b41b7b5c7d29c5.png
Religions américaines

[Tout est,
harmonie Confucianisme —
Religion traditionnelle chj)
\ b, Taoisme

Tout est) Bevddhiime= —= —

sans soi _—_——————
~\ Cariiln) Jainisme
~ = Hindouisme Tout est
Tout es"udmfa‘;i’ Mazdéisme/Zoroastrisme = unité
Religion mésopotamienne g §/Ikl|lim!
P e — (Tout est Bahaisme
Tout est vain écrit Islam
L Gigamesh | Tout estun | Hahammad | %12
—— “abraham

P
Tout est

N amour
Tout est N Jesus) —
cyclique (

L oun) Religion grecque Tout est
— T fichier

Religion celte

Religion égyptienne Ken Thompson

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/919d20655aa6fc408d5a8be08cebf8d418ed3eef39bb4d05ac04c1f6
Event Emitters

e

Event Loop
(single-threaded)

Event Queue ‘ Event Handler

EPUB/67c908a13f5d4051f3d53e241e717c850c505993b72857fd86a47358.jpg
Le principe de la programmation
reactive, C'est de coder avec des fiux
de données asynchrones!

Cest quoi cette histoire de
erogrammation réactive pour la
nouvelle appli ? C'est vraiment

3 2

Oui, C'est trzs
important, on va.
utiliser RxSwit |

Ga permet d'avoir
des interlaces réactives en

A\cemps réel cest géninl LA

Frete ta bullshit, 4 a pas besoin de reactive
machin, c'est un petit projet tout simple !
Vous allez juste. Quitte &
trouver le moyen planter un

de le planter |

autant planter
un petit projet tout

CommitStrip.com

