

Journal Malfunction: réutiliser la représentation intermédiaire du compilateur OCaml

Posté par gasche le 24 juin 2016 à 18:21.
Licence CC By‑SA.

Étiquettes :

	ocaml

	programmation

	recherche

	compilation

[image:]

Stephen Dolan (github, vielle page perso) est un étudiant en thèse d'informatique à Cambridge, UK, et il a de nombreux talents et des centres d'intérêt variés au sein de la discipline. D'un côté il a un goût pour l'élégance mathématique assez visible dans ses travaux (en particulier son travail de thèse très intéressant sur le sous-typage, avec une forte inspiration algébrique), de l'autre c'est aussi un hacker qui s'intéresse à l'implémentation, et a par exemple fait une partie importante du boulot sur "multicore OCaml", un runtime parallèle pour le langage OCaml avec des threads OCaml à mémoire partagée.

Un de ses nouveaux petit projets du moment est Malfunction, un langage fonctionnel bas-niveau qui se traduit directement en une des représentations intermédiaires du compilateur OCaml. L'idée première est de permettre à d'autres langages plus expérimentaux d'obtenir un compilateur pour pas cher, en traduisant leur propre représentation intermédiare en Malfunction, et en réutilisant le compilateur et runtime OCaml derrière—en particulier un gestionnaire de mémoire très bien optimisé pour le style fonctionnel (beaucoup d'allocations de courte durée) et une compilation vers du code natif raisonnablement efficace.

Dans une proposition d'exposé pour le ML Workshop, qui aura lieu en Septembre prochain à Nara, au Japon¹, Stephen Dolan décrit les choix de conception de Malfunction et un prototype de backend pour le langage Idris (un langage de recherche qui permet de programmer avec des types dépendants et de faire des preuves formelles en même temps, un peu comme Coq ou Agda mais plutôt plus orienté programmation), mais les langages plus expérimentaux Links et Eff ont aussi essayé de réutiliser le backend OCaml et pourront être intéressés par Malfunction.

¹: Si vous êtes étudiant ou étudiante en informatique et intéressé-e par la programmation fonctionnelle, le ML Workshop a lieu en même temps que la grosse conférence ICFP 2016 (au Japon cette année) et il existe des financements complets ou partiels pour aider des étudiants assister à la conférence. Voyez la page ci-jointe sur comment candidater à ces financements, il ne faut pas hésiter !

Un truc chouette dans la façon dont c'est pensé est que le langage a une sémantique simple, et en particulier les situations où un comportement est indéfini sont très clairement délimitées. Un comportement indéfini (accéder à un pointeur NULL, etc.) est relativement inévitable dans un langage de bas niveau conçu pour tourner après une vérification de sûreté sur une version plus haut niveau (ou alors juste infligé aux programmeurs et programmeuses comme le C), mais le fait de pouvoir facilement déterminer si un programme donné est bien défini ou non est très important pour certaines applications, et c'est un cauchemar quand les conditions qui le déterminent sont très complexes.

Par exemple, dans le travail sur le test des compilateurs C par génération aléatoire (Csmith), trouver comment générer seulement des programmes bien définis est un des aspects les plus difficiles du problème. Au contraire, on générer des programmes Malfunction aléatoirement, demander à l'interpréteur s'ils sont bien définis et quel résultat ils produisent, et tester que les compilateurs OCaml (code natif ou bytecode) produisent bien le même comportement.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/4b2f7aaf9069f93f077e99ab9cb270c16df603e75b9c3eb6beb03c8d

