

Journal Ajouter un service sur le réseau façon Internet, « à l'ancienne »

Posté par benoar le 05 février 2019 à 23:19.
Licence CC By‑SA.

Étiquettes :

	internet

	ipv6

	debian

	apt-get

[image:]

Bonjour nal,

L'autre jour j'ai voulu ajouter un service de « cache » APT sur le réseau, et j'ai essayé de faire ça bien. J'ai une machine (sous Debian Stretch) déjà utilisée pour plusieurs choses, dont un serveur Web, et elle accueillerait bien ce service en plus, avec son honnête capacité de stockage disponible.

Je vais donc vous expliquer ma démarche, qui demande quand même quelques prérequis :

	 Avoir un réseau IPv6 fonctionnel

	 Maîtriser le serveur DNS de la zone où on veut mettre ce service

	 Utiliser Debian, comme déjà évoqué

Et quand même, je souhaite globalement « faire simple » (vous allez voir, c'est subjectif).

Alors la première chose, c'était le choix du logiciel de « cache » : j'avais déjà essayé apt-cacher-ng et je n'en étais pas mécontent, mais j'ai quand même quelques réticences car j'ai déjà eu des problèmes de cache corrompu pour une raison inconnue (plusieurs fois), et il est même administrable en Web ce qui peut sembler bien, mais moi je trouve que ça fait une interface en trop à surveiller. J'ai alors regardé les alternatives, et approx 1 m'a bien tenté : utilise inetd, programmé en OCaml, configuration en une ligne. Bon, il ne fonctionne pas comme proxy HTTP comme apt-cacher-ng, mais doit être désigné dans le sources.list ; pourquoi pas, fonctionnement différent mais qui est dû je pense à la simplicité de faire ainsi (la complexité de apt-cacher-ng ne doit pas être étrangère au fait qu'il est capable « d'unifier » des paquets issus de mirroirs différents).

Allez hop (j'ajoute l'inetd à la mano, il n'est même pas en recommandation ; un bug à rapporter ?) :

 apt-get install approx openbsd-inetd

Bon, une fois le logiciel choisi, vient le soit-disant problème qui m'a ammené à écrire ce journal en particulier : ce service est fourni en HTTP, et j'ai déjà un serveur sur ce port sur la machine. Que fais-je ? Je change de port et apprend à configurer chaque client pour ? Ou plutôt un reverse-proxy par mon serveur web ? Ou un autre en frontal ? Comment je gère le VirtualHost ? Etc.

STOP ! Je disais en introduction qu'on est en IPv6, et il faut arrêter de penser comme en IPv4 ! Sur Internet (sous-entendu IPv6) les services d'un même type (même port) sont différenciés par IP (v6, vous aurez compris). On ne devrait pas à avoir à tripatouiller du port, faire du mapping, etc (coucou Docker _o/), c'est un paliatif qui a été iventé dans un monde de rareté de l'IP. De plus, cela demande de la configuration d'équipement intermédiaire et client, alors que le but d'IP est de faire des logiciels qui communiquent de bout-en-bout et n'ont jamais besoin de configuration spécifique de la part du réseau (même « virtuel » au sein de votre VM/conteneur/whatever). Bien sûr, ça va à l'encontre de beaucoup de technologies modernes, qui sont bien souvent mal adaptées à IPv6 car pas pensé pour lui dès le départ (re-coucou Docker \o_).

Un autre aspect à prendre en compte : votre service va probablement être référencé dans le DNS (sinon comment souhaiteriez-vous le joindre depuis le réseau ?), et au lieu d'avoir dix-mille couche entre ce nom et votre IP, restez simple et pensez à faire la liaison directement. De plus, vous pourrez référencer la machine par nom dans toutes vos configurations, ce que permettent les API réseau POSIX depuis la nuit des temps. Le DNS est malheureusement un élément souvent oublié aujourd'hui, comme l'a par exemple rappelé Bortzmeyer il y a quelques jours encore lors d'une très bonne conférence, et il est d'autant plus nécessaire dans une configuration IPv6 (et même pour la transition).

Bon, et donc comment on fait ? Et bien on commence par choisir une IP pour ce service : ça sera 2001:db8:0:42::497, dans le sous-réseau de mes serveurs 2001:db8:0:42::/64. Pas besoin de port-mapping sur le NAT, de changer le firewall, etc : des règles simples sont déjà prévues pour laisser presque tout passer sur ce réseau puisqu'il est fait pour ça (les autres réseaux à usage différents sont sur des /64 différents). On met ça dans le classique /etc/network/interfaces, en utilisant un « alias » d'eth0, qui a déjà lui sa « propre adresse » si on peut dire :

 auto eth0:apt
 iface eth0:apt inet6 static
 address 2001:db8:0:42::497

On l'active :

 ifup eth0:apt

On vérifie que ça roule :

 $ ip -6 addr show dev eth0
 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
 inet6 2001:db8:0:42::497/128 scope global deprecated
 valid_lft forever preferred_lft 0sec
 inet6 2001:db8:0:42::9/128 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::201:23ff:fe45:6789/64 scope link
 valid_lft forever preferred_lft forever

Explications : la machine a déjà une IP précédemment définie 2001:db8:0:42::9, statique, pour laquelle je n'ai pas précisé de longueur de préfixe puisque c'est une propriété qui dépend du réseau. On arrive donc avec des prefixlen de 128 pour chacune (c'est à dire juste cette IP-là), plus l'adresse de liaison locale (link-local) « classique ». Seul petit truc étrange : la nouvelle adresse est « deprecated », qui est une propriété issue de la RFC sur l'autoconfiguration (RFC 4862) qui a une influence sur la sélection d'adresse par défaut (RFC 6274) mais n'est pas dérangeante ici si on dit qu'on veut explicitement cette adresse.

Pour vérifier l'histoire des longueurs de préfixe dont je vous parle :

 $ ip -6 route
 2001:db8:0:42::9 dev eth0 proto kernel metric 256 pref medium
 2001:db8:0:42::497 dev eth0 proto kernel metric 256 pref medium
 2001:db8:0:42::/64 dev eth0 proto kernel metric 256 expires 6703sec pref medium
 2001:db8:0::/48 via fe80::298:76ff:fe54:3210 dev eth0 proto ra metric 1024 expires 6703sec pref medium
 fe80::/64 dev eth0 proto kernel metric 256 pref medium

On a bien ici une route d'interface en /64 sur eth0 pour le préfixe, bien reçue d'un Router Advertisement (le compteur d'expiration est présent). Vous voyez un /48 via mon routeur pour mon « site » qui est annoncé par mon routeur afin de ne pas perdre la connectivité aux autres réseaux du site quand la connexion à Internet « tombe », à défaut de route par défaut, comme c'est le cas ici (mon routeur respecte bien l'obligation G-4 de la RFC 7084 et ne s'annonce pas comme routeur par défaut dans ce cas ; en l'occurence, c'est un bug de mon FAI signalé il y a deux ans qui me fait perdre Internet, coucou les adminsys de FDN \o/).

Bref, on peut pinger (en utilisant ping6) ça marche, cool. Maintenant passons au nom : il faut enregistrer cette IP dans le DNS. J'ai simplement utilisé le nom « apt » dans ma zone, et en syntaxe bind ça donne :

 apt IN AAAA 2001:db8:0:42::497

Et pour le reverse (important, peut aider le debug) :

 ; l'ORIGIN vous devriez déjà l'avoir
 $ORIGIN 2.4.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.apra.
 7.9.4.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR apt.example.com.

Après le rechargement des zones, on ping le nom, pareil, ça marche toujours.

Passons maintenant à la configuration d'approx ! Alors c'est un logiciel spartiate, et seul un exemple de configuration est fourni dans /usr/share/doc/approx/examples/approx.xinetd, qu'il faut adapter à inetd (Edit : je me rends compte qu'il a une config systemd par défaut, mais mon serveur n'ayant pas ce logiciel, elle est ignorée). Ça donne :

 apt.example.com:http stream tcp nowait approx /usr/sbin/approx

Vous tiquez peut-être sur la première colonne, de syntaxe inhabituelle pour ceux qui connaissent inetd : on ne met souvent que le port, ici on ajoute le nom d'hôte sur lequel écouter en plus (syntaxe classique "hôte:port"), car c'est bien sur une IP particulière qu'on veut présenter ce service ; et oui, un nom sur lequel se binder ! Et c'est très pratique : pas d'interface ou quoi que ce soit à se soucier, en précisant un nom (ou une IP, même), on sépare bien la question du routage de la localisation de service (choses souvent mélangées dans certaines technologies modernes). De plus, le fait d'utiliser le nom fait qu'on se rend tout de suite compte d'un décalage entre l'IP définie localement et le nom défini centralement dans le DNS qui sert en général d'autorité sur la localisation d'un service (c'est-à-dire que ça mettra une erreur au démarrage, indiquant que le démon ne peut pas se binder à l'IP indiquée).

On relance inetd :

 service openbsd-inetd reload

Mais là, paf, pas de service :

 # ss -lp sport = http
 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
 tcp LISTEN 0 128 2001:db8:0:42::9:http :::* users:(("nginx",pid=27548,fd=8),("nginx",pid=27547,fd=8),("nginx",pid=27540,fd=8))

Il y a mon serveur Web, mais pas approx2. Regardons les logs :

 # tail /var/log/syslog
 […]
 Feb 3 22:05:47 machine inetd[7319]: http/tcp: apt.example.com: No address associated with hostname

Réfléchissons deux secondes : pas d'adresse avec ce nom, qui a pourtant bien marché tout à l'heure lors du ping ? Ah, mais bien sûr, il n'y a pas de nom en IPv4 ;-) (OK, un peu d'expérience avec le dual-stack sur différents logiciels aide un peu). Le man d'inetd indique qu'il faut préciser "tcp6" dans ce cas, et ajoute malicieusement :

"tcp" and "udp" will be recognized as "TCP or UDP over default IP version". This is currently IPv4, but in the future it will be IPv6.

Je pense qu'il a été écrit il y a quelques temps déjà (« IPv6 support was added by the KAME project in 1999. » !), et l'auteur ne devait pas penser que le futur serait si long à atteindre ! Et donc on adapte la configuration, on recharge inetd, et hop :

 # ss -lp sport = http src apt.example.com
 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
 tcp LISTEN 0 128 2001:db8:0:42::497:http :::* users:(("inetd",pid=7319,fd=8))

Ça roule. Pour finir de configurer approx, il faut lui indiquer quel sous-répertoire fait pointer vers quel mirroir. On prend les exemples fournis dans le fichier de configuration /etc/approx/approx.conf et on met par exemple :

 debian http://ftp.nerim.net/debian
 security http://security.debian.org/debian-security

Ce qui donnera côté client, pour qui voudra ajouter ce dépôt dans une configuration genre /etc/apt/sources.list.d/apt.example.com.list (ici pour une Stretch) :

 deb http://apt.example.com/debian/ stretch main contrib
 deb-src http://apt.example.com/debian/ stretch main contrib
 deb http://apt.example.com/security/ stretch/updates main
 deb-src http://apt.example.com/security/ stretch/updates main

Un petit coup de "apt-get update" et roule ma poule, ça fonctionne !

Bon, c'est plutôt bien, mais j'aimerais peut-être mettre un peu de contrôle d'accès dessus, car une des propriétés géniales d'IPv6, c'est que quand on est « sur le réseau », bah on est accesible de tout le réseau. Et je suis bien gentil mais je n'ai pour l'instant pas envie de faire cache pour la Terre entière. Alors je vais utiliser les bon vieux tcp-wrappers, normalement intégrés à inetd (selon le man) mais qu'en fait je n'ai réussi à faire fonctionner qu'après l'avoir invoqué explicitement (Edit : en fait c'est l'option -l à ajouter au lancement du démon…). Pour cela, il faut seulement ajouter "tcpd" avant notre commande dans inetd.conf, ce qui donne pour la ligne complète :

 apt.example.com:http stream tcp6 nowait approx /usr/sbin/tcpd /usr/sbin/approx

On remplit ensuite les autorisations, dans le format "démon@hôte: client" (un peu plus spécifique que le standard "démon: client"), pour ce qui est autorisé dans /etc/hosts.allow :

 approx@apt.example.com: [2001:db8::]/48

Et pour ce qui ne l'est pas dans /etc/hosts.deny :

 approx@apt.example.com: *

Après un petit tour dans /var/log/daemon.log, on voit bien des connexion (réussies) loggées :

 Feb 4 22:14:20 apu approx[14145]: connect from 2001:db8::0:7123:45ff:fe98:7654 (2001:db8::0:7123:45ff:fe98:7654)

Un test depuis une autre adresse renverra bien un « reset » (après une résolution inverse, ce qui retarde la réponse de quelques secondes si le client n'est pas dans la zone ip6.arpa, ce qui est souvent le cas des adresse SLAAC — c'est le cas ci-dessus).

Voilà donc, un bon petit service configuré de manière standard et « à l'ancienne » (IP, DNS, ports standard, outils Unix standards), qui tourne simplement sans trucs trop complexes. Forcément, étant IPv6 seulement, ça va en embêter certains, mais avec la complexification et la baisse de fiabilité des mises en place IPv4 qui arrive, j'espère que cette alternative sera de plus en plus considérée comme sérieuse et efficace. J'espère aussi que vous avez appris quelques trucs sur la manipulation des outils autour d'IPv6 (ip et ss de la suite iproute2, bind et IPv6) et de comment débugger des problèmes avec ce protocole, ainsi que quelques techniques spécifiques à lui.

Comme amélioration, on pourrait imaginer rendre le service plus résilient en ajoutant une autre instance d'approx sur un autre serveur : ça se fera facilement en ajoutant une deuxième IP derrière le nom qu'on a défini, c'est tout ! (c'est également car ce service de cache n'a pas d'état partagé nécessaire entre instance) On pourrait même utiliser les enregistrement SRV que apt gère (_http._tcp.apt.example.com dans notre cas) pour y ajouter une meilleure répartition et des serveurs de repli. Tout ça nous apporte de la disponibilité sans ajouter un quelconque intermédiaire (load-balancer ou autre), le travail étant fourni par les extrémités, et en tirant parti de cette merveilleuse base de données clé-valeur distribuée qu'est le DNS !

Bref, pensez Internet, pensez futur, pensez IPv6, et lancez plein de services « à l'ancienne » !

	
La homepage est normalement le git, mais tous les liens sont cassés depuis le malheureux passage à Gitlab, logiciel même pas présent dans l'archive ; une honte. ↩

	
On aurait pu filtrer sur l'IP en particulier en ajoutant "src apt.example.com" comme argument à ss, mais la syntaxe est assez infâme je trouve ; est-ce que ça a un rapport avec le fait que l'auteur russe travaille dans le nucléaire et a fait un soft au nom de nazi ?… ↩

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

