

Journal Premiers pas sur l'architecture RISC-V avec la carte HiFive1

Posté par AnthonyRabine (site web personnel) le 03 juin 2020 à 22:29.
Licence CC By‑SA.

Étiquettes :

	risc-v

	microcontrôleur

	gcc

	open_hardware

[image:]

Sommaire

	Rappel sur les microcontrôleurs

	Historique RISC-V

	Le SoC Freedom E310

	Premier branchement

	Essai de logiciels

	Conclusion

Une révolution, tout simplement. Depuis que je travaille dans le domaine embarqué, j'ai connu quelques changements intéressants avec notamment l'arrivée de l'architecture Cortex-M, mais là, c'est un cran au-dessus. Une architecture de microcontrôleur Open Source, j'en ai rêvé, maintenant elle existe.

Rappel sur les microcontrôleurs

Petite piqûre de rappel : les microcontrôleurs sont de très petits processeurs équipés de périphériques pour contrôler le monde extérieur au composant : des actionneurs ou des capteurs. De plus, ces composants disposent de leur propre mémoire pour y stocker le logiciel (ROM/RAM), cela en font donc de véritables petits ordinateurs prête à l'emploi.

En pratique, on obtient un composant électronique avec plus ou moins de pattes qui sera l'élément central d'une carte électronique.

[image: image]

Exemple de micro

[image: image]

Exemple de carte de développement

Continuons par un panorama non exhaustif des architectures existantes. Il en existe plein, mais les plus populaires sont :

	La gamme Microchip, PIC12, PIC16, PIC24 sont très populaires, notamment grâce à leur bonne intégration dans l'outil MPLAB du fondeur. Je les trouve régulièrement chez mes clients car les outils (sondes JTAG comprises) sont peu chers. Ces architectures ne sont pas licenciées à des tiers.

	La grande famille Cortex-M3 : tous les fondeurs ont créé leur gamme à partir de cette IP appartenant à ARM qui vit grâce aux licences et royalties sur chaque composant vendu

	Chez TI, on trouve des MSP430 et autres DSP intéressants ; là aussi, c'est du propriétaire

	La gamme AVR, chez Atmel, maintenant Microchip, popularisée par l'Arduino

	Les fondeurs japonais : Hitachi/Renesas/NEC/Mitsubishi ont créé des architectures plutôt intéressantes, j'ai eu l'occasion de travailler sur des NEC à la mémoire Flash incroyablement performante

Depuis 15 ans maintenant, ce petit monde se côtoyait ; l'architecture ARM est devenue populaire pour avoir rapidement misé sur la faible consommation sans détériorer les performances. C'est vraiment l'architecture qui a fait passer les architectures embarquées vers le tout 32-bits. Elle est devenue au fil des ans un standard de fait et en choisissant un microcontrôleur ARM on s'assurait d'une disponibilité très grande d'applications tierces compatibles (notamment les RTOS), d'un écosystème large et d'un savoir faire largement répandu (livres). Par exemple, on avait ENFIN le choix de ses outils de développements comme la sonde JTAG, le compilateur et l'éditeur/débogueur.

Historique RISC-V

Revenons au RISC-V.

C'est en l'an 2010 que l'architecture RISC-V est née au sein l'Université de Californie à Berkeley, aux États-Unis. Cette spécification décrit un jeu d'instructions 32, 64 ou 128 bits est libre et dénuée de tout royalties. Une fondation a été créée et a même récemment déménagée en Suisse ; tout est bon pour pérenniser le projet.

[image: image]

Le site de la fondation, bon point de départ

Écrire une spécification, c'est bien ; l'étape suivante, c'est d'avoir une implémentation réelle, un composant facilement accessible au commun des mortels. Paradoxalement, ce sont des nouveaux venus (pour moi) sur le marché qui ont sorti les premiers composants. Le site riscv.org liste les fondeurs et les fournisseurs de matériel (cartes électroniques). Dans un premier temps, ce sont surtout des implémentations non libres qui sont sorties (HiFive, Andes …) mais des projets libres sont montés (https://www.lowrisc.org/).

Voilà, allez voir la page Wikipedia pour en apprendre plus ainsi que le site de la Fondation : riscv.org.

Le SoC Freedom E310

Intéressons-nous au SoC (System on Chip) Freedom E310 créé par la société SiFive. Elle va nous permettre de tester facilement le composant en proposant une carte de forme compatible à Arduino, la HiFive version 1 qui existe en deux modèle : l'originale et la version B.

[image: image]

Première version

[image: image]

HiFive RevB

Lorsque j'ai regardé les spécifications du microcontrôleur, j'ai été un peu surpris : habitué à des composants modernes bourrées de périphériques, le E310 est … particulier ! Notez :

	320MHz, pour un micro, c'est énorme (je traite d'habitude avec des composants entre 8 MHz et 100 Mhz)

	Pas de mémoire flash interne, mais un accès Quad SPI où le code est stocké ; ce n'est pas courant, probablement parce que concevoir de la mémoire Flash est un savoir faire assez spécial

	16kB de RAM, pas hyper impressionnant surtout si on veut utiliser un RTOS. Les applications seront limitées en taille

	Coeur RV32 'I' (A load-store ISA with 32, 32-bit general-purpose integer registers) avec les options :

	M : Integer Multiplication and Division

	A : Atomics

	C : 16-bit Compressed Instructions

	Du JTAG, on en reparlera plus tard

	PWM, UART, SPI … okay, mais pas d'I2C ! (corrigé dans la version B)

D'ailleurs la version B est plus intéressante pour une utilisation réelle dans une application IoT (je quote le site) :

	Hardware I2C to read from digital sensors

	Additional UART to communicate with other peripherals

	Low-power sleep mode, keeping only the minimal amount of logic in the Always-On domain powered

	On board wireless networking

La deuxième révision est donc la plus intéressante.

Sur la carte, on retrouve un composant de type USB-UART (puce FTDI) qui nous servira à injecter du code dans la mémoire flash externe et à déboguer notre application.

Voici les principaux périphériques :

[image: image]

Et voici le diagramme bloc de l'intérieur du composant :

[image: image]

Bon, après ce rapide tour d'horizon, quelques remarques peuvent être dégagées :

1. La carte Rev B semble plus intéressante, au moins pour l'I2C

2. Pas de mémoire flash interne au micro ce qui impose d'ajouter un composant supplémentaire : dommage pour les petits designs.

3. Des périphériques un peu limités, c'est brut de décoffrage, le minimum syndical

Premier branchement

Branchez la carte à votre ordinateur via le port USB. Une liaison série apparaît, genre un /dev/ttyUSBx. Lancez votre terminal série préféré, GtkTerm de mon côté, et appuyez sur le bouton reset pour redémarrer pour observer le petit message suivant (les paramètres de la liaison série sont affichés en bas) :

[image: image]

Vous noterez le petit effet d'arc-en-ciel généré par la LED RGB. C'est bon, le programme embarqué livré de base. Le microcontrôleur dispose d'un chargeur de démarrage embarqué dans la mémoire flash, un truc du genre Arduino, qui ne sera pas effacé par votre programme utilisateur.

Essai de logiciels

Maintenant que l'on a le hardware, il nous faut du logiciel, notamment le compilateur mais aussi le débogueur. Pour cela, SiFive a préparé un bundle autour d'une version d'Eclipse modifiée, FreedomStudio.

Téléchargez-le à partir du site du fabricant, dézippez et lancez-le. Au premier démarrage, plusieurs écrans vont apparaître vous proposant de choisir les différentes cibles supportées et vos outils de développement.

Choisissez les paramètres suivants :

[image: image]

Normalement le projet devrait compiler automatiquement et avec succès puis la fenêtre de lancement du débogage apparaît :

[image: image]

Laissez les paramètres par défaut et programmez la cible. Le log OpenOCD s'affiche en rouge, ça fait peur mais tout se passe (normalement) bien. Sur votre terminal série devrait s'afficher le message suivant (touche reset sinon pour relancer).

[image: image]

Vous pouvez tenter de modifier le programme en ajoutant par exemple une petite boucle infinie et un peu de code. Tentez de placer un point d'arrêt sur une ligne de code (Maj+Ctrl+B) ; magique, ça fonctionne, le code s'arrête.

SiFive n'est pas le seul à fournir des outils de développement. Outre GCC et LLVM, l'éditeur propriétaire IAR fournit aussi son compilateur (et probablement bien intégré à son IDE). Au niveau des débogueurs professionnels, les sondes Segger et Lauterbach sont compatibles.

Nous voyons donc que l'industrie s'intéresse à cette plateforme et les grands éditeurs sont au rendez-vous. On attend maintenant les fondeurs !

Conclusion

La carte HiFive est vraiment sympa ; compatible Arduino, elle vous permettra d'utiliser bon nombre de cartes d'extensions existante. Tout a fonctionné du premier coup, cette première approche de l'architecture RISC-V est un succès.

Notez que l'architecture RISC-V est large : la société SiFive fournit également une carte disposant d'un processeur plus puissant capable de faire fonctionner Linux dessus. Le futur s'annonce captivant.

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/ee73bd2b34d63d02e79f2c78a3dab5b695dfaa2116137de20b74b737.png
S Create a Freedom E SDK Project Y <

Use this Freedom E SDK-

[bundled] /media/scratch/downloads/FreedomStudio-2019-08-2-in64/SiFive/freedom-e-sdkv201908

Select Target

Filter Tags: | v/ openocd Contains:

HiFiveL is a low-cost, Arduino-compatible development board featuring the Freedom E310. Its the best
way to start prototyping and developing your RISC-V applications.

This target s ideal for getting familiarize with RISC-V ISA instructions set and freedom-metal libraries. It
supports:

M) Use the BSP from the SDK when building this project
© Opensska

M) Use the Metal Library from the SDK when building this project

Select Example Program

hello

hello

Asimple "Hello, World!" example to demonstrate printf and build environment.

Options

Projectname | sifive-hifive1-hello-1

(you can change the project location on the next page)

W] create a debug launch configuration for Openocd v

* Watch

EPUB/4504d4bb4f066ddac06b9aa3ddfa4e4ab2629049e0a4d023fc5cb4c2.png
80-Pin TQFP

Seegn 5
13888 s §E885 3
EEEZE85r e 82358 00ad
3ZgZ reege 538325888
SECEEEREEC 808828332
§55£:00505£8808688883%
SRRRRERRRNFREBLBE338C
PWM3HRES [10 60 [EMUC1/SOSCOIT1CKICNO/RC 14
PWMALRES [2 59 [EMUD1/SOSCIGN1IRC13
[58 [EMUC2I0CTIRDD
Tackret 4 57 [1camD1
TackiRe3 [5 56 [ICYRD10
SCK2/CN8/RGE [_| 6 55 [IC2/RD9.
SDI2ICNI/IRGT [7 54 []IC1RD8
SDO2/CN10/RGE [8 53 [] INT4/RA1S
R 9 52] INT3RA14
§s2ieN11Res [10 dsPIC30F6010A 51 [vss
vss |11 50] OSC2/CLKO/RC15
Voo T 12 2] oscricLi
FOTANNT1/RES [13 48 [voo
FLTBINT2ZRES [14 47 [sCLRG2
ANS/QEBICN7/RBS [15 46 [__] SDARG3
AN4/QEA/CNG/RB4 [16 45 [EMUC3/SCK1/INTO/IRF6
ANB/INDX/CNSIRB3 [17 44 [SDHIRFT.
AN2/ESTICN4RB2 [18 43 [EMUD3/SDO1/RF8
PGC/EMUC/AN1/CN3/RB1 [19 42 [UIRXIRF2
PeDIEMUDIANOICN2RED L] 20 41 [urmxrrs
5328888258882z 85828
FEpE szt gEEEfECs
Bzig £z $2:ifSszz
g fk "TE% 3zEgsiic
g a5 gs
z ESBEE
g
2

EPUB/1a92d3c7098b6a7b20bd95eb1d8666113ff782cf67dd604f8e1780e5.png
Hello, World!

EPUB/18f34405c60e8a92c6a79f58e8d991e1c66b12d7b8e6ad2199373cf2.png
5 Edit Configuration

Edit configuration and launch.

Name: | sifive-hifive1-hello
TargetDTs # Debugger Startup & Config % Source i Common
Project:
sifive-hifive1-hello Browse...

©/C++ Application:

srdebug/hello.elf|

Variables... | SearchProject.. = Browse..
Build (i required) before launching
Bulld Configuration: | Use Active v
Enable auto build Disable auto build
(® Use workspace settings Configure Workspace Settings.
Revert Apply

EPUB/a2b286bfca356d4d3ac6c20bb02fbd747eecd1793f6d1fb7cc1459b9.jpg

EPUB/00e04623191e03fd3f39aa4438952191d781e508fbfdb2cefc21c4e4.png
R

dip

FE310G-0000

E31 Core Complex

Tnstruction Cache Refil

Instruction Cache
16KiB, 2-way

Branch Prediction

Tnstruction Fefch

Instruction Buffer

Tnst. Decompressor

RV32IMAC

Multiplier/Divider

Load/Store

Data SRAM (16KiB)

JTAG XHTAPC]

Debug RAM (288)

Debug Module

eip

sip

Interrupt Control

Platform-Level

Global

Control

Core-Local Interrupt

Interrupts

C-Bus: TileLink B32 D32

Lea/mme Clock Ticks

S b S

GPIO Complex
UARTO 3.3V MOFF Pads
UART1 1.8V MOFF Core
PWMO (8-bit)
] | PWMT (16-Dt) GPIO
PWM2 (16-bit)
QsSPI1
o QSPI2
a
o QSPI0 X QsPI Flash
S ——oi otPekB
=
3 Mask ROM (8KiB)
;: Clock Generation o
g
o H hfxoscin
HFXOSC HD] hfxoscout
HFROSC

Always-On Domain

-
11.8V AON Pads
1 1.8V AON Core
Ipru_out_0
{pmu_out_1
| dwakeup_n

'
'
1 % Backup Registers
I
b1

S
Core Reset Syncle % corerst
< ftcempip, | @ Real-Time Clock
=

U

wdogcmpipl | .. Watchdog
! a LFROSC

B

Reset Unit

'
HES
'

Figure 3.1: FE310-G000 top-level block diagram.

EPUB/34e376fd2fdd86d13d36b77eea5a1a4e6c14397a4e2af9d832147081.jpg

EPUB/4cd7d80ff02705afd1e45191512664d4b8e97fceadc7c5587724e3be.png
Join the Mailing Lists & Member Login

.

N
Frequently Asked Questions about RISC-V

Unprivileged Specification

Privileged ISA Specification 1. What is the license model?
Debug Specification

e foru ations.

n all types

ons for comn

gners ar mpler or other exploitations as

enta

they see f t are compliant to the specifications

* O Software Status

to memt V International for

EPUB/9b8b2844e6c9bb9b17f18bbccb10e5b453d57a6ff4096575c7400efa.jpg

EPUB/170862429d22ca8c531cfa1d351a9f471bbe5c6e5d566376144c74dc.png
SIFIVE, INC.

5555555555555555555555555
5555 5555
5555 5555
5555 5555
5555 5555555555555555555555
5555 555555555555555555555555
5555 5555
5555 5555
5555 5555
5555555555555555555555555555 55555
55555 555555555 55555
55555 55555 55555
55555 5 55555
55555 55555
55555 55555
55555 55555
55555 55555
55555 55555
555555555
55555
5

‘led_fade' Demo

555
5555555 Are the LEDs Changing? [y/n] 555555555
555

y
PASS

EPUB/3f4d8d37cd01e307255cb12156ae0f161b731d97934cc6ca73f9f62b.png
DIGITAL (~PWM) & &

= “&Hifive 1 B EETI

EPUB/avatars711063000avatar.jpg

