

Journal Implementer un serveur Webdav - qui fonctionne - sous Linux.

Posté par Andre Rodier (site web personnel) le 06 juillet 2023 à 20:18.
Licence CC By‑SA.

Étiquettes :

	nginx

	webdav

	selfhost

[image:]

Sommaire

	
Mes contraintes de départ
	
Le serveur en tant qu'utilisateur
	Initialisation

	Réecriture des requêtes

	
Serveur parent
	Service nginx / pam

	Configuration nginx

	Tests de clients WebDAV

	Questions

	Quelques liens

Vu dans un journal précédent (https://linuxfr.org/users/ploum/journaux/vos-services-pour-mail-calendrier-et-synchro-de-dossiers), voici un peu de contenu utile, enfin, j'espère.

Ce sont des exemples / modèles de configuration que j'ai utilisé sur Homebox, mais que vous devriez normalement être en mesure d'utiliser, en tout cas, l'idée.

Si vous voulez une solution clé en main, désolé, ce n'est pas le but du journal.

Il semble que lorsque l'on utilise nginx en lieu et place d'Apache, l’implémentation soit plus difficile que prévu.

Mes contraintes de départ

	Comme j'ai déjà nginx, je ne veux pas en plus utiliser Apache.

	Je veux utiliser un serveur pour chaque utilisateur, qui s’exécute avec ses droits.

	Je veux utiliser l'authentification de la base LDAP de mon serveur.

	Je veux utiliser des permissions strictes, c'est à dire restreindre restreindre l'accès des fichiers crées à l'utilisateur qui les a envoyé.

	Je veux pouvoir renommer et déplacer des dossiers et des fichiers sans erreurs.

Je vous laisse deviner le sens des macros Jinja2, mais cela ne devrait pas vous empêcher de comprendre la logique.

Le serveur en tant qu'utilisateur

Le premier serveur, tourne comme un service systemd utilisateur, dont voici la configuration:

error_log /home/archives/{{ user.uid }}/webdav/webdav-error.log;

pid /home/archives/{{ user.uid }}/webdav/nginx.pid;

Modules to load
load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;
load_module modules/ngx_http_dav_ext_module.so;

events {
 worker_connections {{ workers_connections }};
}

http {

 sendfile on;
 tcp_nopush on;
 types_hash_max_size 2048;

 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 # log files per virtual host
 access_log /var/tmp/webdav-user/{{ user.uid }}/webdav-access.log combined;
 error_log /var/tmp/webdav-user/{{ user.uid }}/webdav-error.log;

 # Define lua functions
 init_by_lua_file /var/www/webdav/functions/init.lua;

 # DAV parameters
 dav_ext_lock_zone zone={{ network.domain }}:10m;

 server {

 # Listen on a socket file
 listen unix:/var/tmp/webdav-user/{{ user.uid }}/socket;

 # Default webdav root, although this should never be accessed
 root /home/archives/{{ user.uid }}/files;
 autoindex on;

 location / {
 dav_methods PUT DELETE MKCOL COPY MOVE;
 dav_ext_methods PROPFIND OPTIONS LOCK UNLOCK;
 dav_ext_lock zone={{ network.domain }};

 # Upload parameters
 client_body_temp_path /var/tmp/webdav-user/{{ user.uid }}/tmp/;

 # Creation parameters
 dav_access user:rw;
 create_full_put_path on;

 # Handle complex DAV functions
 rewrite_by_lua_file /var/www/webdav/functions/rewrite.lua;

 # Optimisations for file transfer
 send_timeout 3600;
 client_body_timeout 3600;
 keepalive_timeout 3600;
 lingering_timeout 3600;
 client_max_body_size 10G;

 root /home/archives/{{ user.uid }}/files/;
 autoindex on;
 }

 # Do not use a favicon
 location ~ ^/favicon.ico$ {
 return 204;
 log_not_found off;
 access_log off;
 expires max;
 }

 }

}

Comme on peut le voir, il tourne sur un socket unix, et non sur un port. Cela permet, par exemple avec des ACL posix, de compartimenter chaque serveur plus facilement.

Le service systemd est assez simple:

[Unit]
Description=User webdav server
ConditionDirectoryNotEmpty=%h/.config/webdav/

[Service]
Type=forking
ExecStart=/usr/sbin/nginx -c %h/.config/webdav/nginx.conf
Restart=on-failure

[Install]
WantedBy=default.target

Comme on peut le voir plus haut, la magie est dans les fonctions Lua:

Initialisation

local lfs = require "lfs"

function is_dir(path)

 local success, attr = pcall(lfs.attributes, path)

 if not success then
 return false
 end

 if type(attr) ~= "table" then
 return false
 end

 return attr.mode == "directory"

end

Réecriture des requêtes

C'est la fonction qui permet de ne pas avoir d'erreur lorsque l'on déplace ou renomme un dossier.

local dir_requested = is_dir(ngx.var.request_filename)

if ngx.req.get_method() == "MKCOL" and not ngx.re.match(ngx.var.uri, "^.*/$") then

 -- When creating a collection, ensure the path ends with '/'
 local uri = ngx.re.sub(ngx.var.uri, "^(.*?)/?$", "$1/")
 ngx.req.set_uri(uri, true)

elseif dir_requested and not ngx.re.match(ngx.var.uri, "^.*/$") then

 -- URL should end with "/" if directory requested
 local uri = ngx.re.sub(ngx.var.uri, "^(.*?)/?$", "$1/")
 ngx.req.set_uri(uri, true)

end

local dst = ngx.req.get_headers()["Destination"]

if dst then
 -- Remove hostname from destination
 dst = ngx.re.sub(dst, "^(https?://.+?)?(/.*)$", "$2")

 -- Rename the folder Destination does not end with a /,
 -- it is necessary headers-more-nginx-module
 if dir_requested then
 dst = ngx.re.sub(dst, "^(.*?)/?$", "$1/")
 end

 ngx.req.set_header("Destination", dst)
end

-- PROPPATCH no instruction processing PROPFIND.
if ngx.req.get_method() == "PROPPATCH" then
 ngx.req.set_method(ngx.HTTP_PROPFIND)
end

Serveur parent

Le serveur parent est un proxy vers chaque serveur utilisateur. Lui, s'occupe de l'authentification (avec nginx_pam), et de passer les requêtes au serveur sous-jacent.

Service nginx / pam

Deployed by {{ role_name }} role
This allows other web sites to use nginx authentication
auth required pam_ldap.so
account required pam_ldap.so

Configuration nginx

dav_ext_lock_zone zone={{ network.domain }}:10m;

server {

 # webdav FQDN
 server_name webdav.{{ network.domain }};

 # Listen on both IPv4 and IPv6
 listen 80 http2;
 listen 443 ssl http2;
 listen [::]:443 ssl http2;

 # Add security headers
 {% for sh in nginx_sec_headers -%}
 add_header {{ sh.id }} {{ sh.value | quote }};
 {% endfor %}

 # Add Content security policy
 add_header Content-Security-Policy "...";

 # Features policy
 add_header Feature-Policy "...";

 # Enforce https
 if ($https != "on") {
 return 301 https://$host$request_uri;
 }

 # SSL configuration
 ssl_certificate /etc/ssl/certs/webdav.{{ network.domain }}.crt;
 ssl_certificate_key /etc/ssl/private/webdav.{{ network.domain }}.key;
 ssl_trusted_certificate /etc/ssl/certs/webdav.{{ network.domain }}.issuer.crt;

 ssl_protocols {{ security.tls.versions | join(" ") }};
 ssl_ciphers {{ security.tls.openssl_ciphers | join(":") }};
 ssl_prefer_server_ciphers off;

 # OCSP stapling
 ssl_stapling on;
 ssl_stapling_verify on;

 # Remove useless tokens for better security feelings ;-)
 server_tokens off;

 # pam authentication
 auth_pam {{ network.domain }};
 auth_pam_service_name "nginx";
 allow 127.0.0.1;
 allow ::1;
 satisfy any;
 deny all;

 # Default webdav root, although this should never be accessed
 root /var/www/webdav/default;
 index index.html;

 # This might help for office files
 gzip on;

 location / {

 # pam authentication
 auth_pam {{ network.domain }};
 auth_pam_service_name "nginx";
 allow 127.0.0.1;
 allow ::1;
 satisfy any;
 deny all;

 # Dynamically forward to user socket
 proxy_pass http://unix:/var/tmp/webdav-user/$remote_user/socket;

 root /home/archives/$remote_user/files;
 autoindex on;
 }

 # Do not use a favicon
 location ~ ^/favicon.ico$ {
 return 204;
 log_not_found off;
 access_log off;
 expires max;
 }

 # log files per virtual host
 access_log /var/log/nginx/webdav-access.log combined if=$loggable;
 error_log /var/log/nginx/webdav-error.log;
}

Tests de clients WebDAV

J'ai testé cette configuration avec le client Gnome, et des clients Android.

Pour le client Android, DavX marche à merveille.

J'utilise aussi Cryptomator, un excellent client WebDAV avec le chiffrage côté client. À noter que ce dernier est aussi disponible sous Linux.

Cela permet donc de stocker des fichers "dans un cloud", sans devoir faire une confiance aveugle au fournisseur.

Questions

	Idéalement, démarrer le service utilisateur systemd à la demande.

	Si vous avez des questions ou des remarques, mettez les en commentaire, je répondrai si possible.

	Si vous avez des remarques sur d'éventuels problème de sécurité, envoyez les-moi par email ou Jabber.

Quelques liens

Voici quelques liens, notamment sur des blogs externes, dont je me suis largement inspiré.

	https://nginx.org/en/docs/http/ngx_http_dav_module.html

	https://www.robpeck.com/2020/06/making-webdav-actually-work-on-nginx/

	https://blog.learn-or-die.com/buildAWebDavServerWithNginx/

	https://gist.github.com/akhilman/c3542309d07081226de455ff6160ab50

	cryptomator

	homebox / role webdav

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars349062000avatar.png

