

Sandboxing fin dans le noyau linux : la saga des filtres seccomp

Posté par gasche le 15 janvier 2012 à 17:24.
Édité par claudex, Manuel Menal, Benoît Sibaud et baud123.
Modéré par Sylvain Rampacek.
Licence CC By‑SA.

Étiquettes :

	sandbox

	sécurité

	kernel

	linux

	seccomp

	noyau_linux

	linus_torvalds

[image: Noyau]

Les développeurs de Google sont toujours à la recherche de solutions permettant d'améliorer la sécurité du navigateur web Google Chrome (ou son implémentation libre Chromium), ou de leur projet ChromeOS. Dans la dépêche à ce sujet, je vous avais raconté leur participation au projet Capsicum, qui apporte une gestion très fine des privilèges d'un processus, maintenant intégré dans FreeBSD.

Bien que les techniques mises en place par Capsicum soient pensées pour tous les systèmes inspirés d'UNIX, il n'y a pas grand espoir aujourd'hui qu'un port Linux soit accepté par les développeurs noyau ; Capsicum est un projet externe qu'il faudrait d'abord intégrer, ré-exprimer en terme des fonctionnalités existantes dans le noyau ; et les mainteneurs sont notoirement mécontents de la multiplication des solutions de sécurité (les Linux Security Modules en particulier) et ne verraient pas d'un bon œil l'apparition d'un nouveau candidat. Les développeurs Chromium utilisent sous Linux le primitif système de sandboxing seccomp, bien qu'il soit beaucoup moins flexible que Capsicum et donc nettement plus pénible et difficile à utiliser.

Depuis 2009, les développeurs Chrome essaient d'étendre les capacités de seccomp pour mieux répondre à leurs besoins. Les changements se sont révélés beaucoup plus difficiles à faire accepter que prévu : la situation a semblé bloquée à de nombreuses reprises et n'a pas évolué pendant de nombreux mois. Après plusieurs tentatives infructueuses, Will Drewry vient de proposer une nouvelle approche qui pourrait obtenir l'approbation des développeurs noyau ; mais rien n'est encore gagné…

Sommaire

		Capsicum et le sandboxing Chrome

	Filtrer les appels systèmes

	Le détour ftrace/perf

	La nouvelle approche, par le Berkeley Packet Filter

Capsicum et le sandboxing Chrome

Les fonctionnalités du projet Capsicum peuvent se résumer en deux points clés. En activant un mode capabilities, un processus rentre dans un état où :

	Toutes les opérations (appels systèmes en particulier) qui utilisent de l'autorité ambiante (droit de désigner n'importe quel fichier, mémoire partagée…) sont interdites, à lui ainsi qu'à ses processus fils. Les opérations ne demandant pas de privilège particulier (comme le fait de forker un processus fils par exemple) restent autorisés.

	Les descripteurs de ressources, en particulier les descripteurs de fichiers, permettent d'indiquer que certaines opérations sont autorisées sur la ressource qu'ils désignent. Un programme qui crée ces descripteurs « autorisés » avant d'entrer dans le mode capabilities peut donc utiliser ces droits restants et les transmettre à d'autres programmes (en transmettant le descripteur).

Ces deux fonctionnalités permettent à un processus de choisir lui-même l'ensemble des droits/privilèges très restreints (beaucoup plus que les droits d'un utilisateur UNIX classique) pour mener à bien sa mission, et à se priver volontairement de tous les autres. Cela augmente la sécurité du système, puisque cela empêche une faille dans ce programme de causer beaucoup de dégâts — il n'a plus les droits pour le faire.

Les fonctionnalités de Capsicum ont permis aux développeurs Chrome d'implémenter la compartimentation des différents onglets du navigateur web de façon satisfaisante (sans donner plus de droits que nécessaire), en seulement une centaine de lignes.

Au contraire, la version Linux de Chrome doit se contenter des fonctionnalités de sécurité présentes dans le noyau Linux. Cela se fait en utilisant le mécanisme seccomp qui est beaucoup plus rigide : c'est du « tout ou rien », activer seccomp interdit tous les appels systèmes autres que read, write ou exit. Pour arriver à faire quand même quelque chose, Chrome doit implémenter son contrôle d'accès maison : les processus sous seccomp, quand ils veulent effectuer une action, envoient un message à un processus ayant les droits de l'utilisateur, qui vérifie que l'action est autorisée avant de l'exécuter. Cette méthode ressemble à celle utilisée par PolicyKit pour donner certains droits systèmes aux programmes utilisateurs. Mais c'est lourd à implémenter, il y a 11 000 lignes de code pour faire ça dans Chrome. Heureusement, notre orgueil de libristes est sauf, il faut environ 22 000 pour faire la même chose sous Windows.

Filtrer les appels systèmes

Pour se simplifier la vie, les développeurs Google ont proposé d'étendre seccomp pour permettre, au moment d'entrer dans le mode sécurisé, de choisir quels appels systèmes autoriser. Ils pourraient alors autoriser les appels qu'ils jugent inoffensifs, et se concentrer sur la vérification (à la main, comme avant) des cas délicats.

Après quelques discussions de conception, le 7 mai 2009, Adam Langley (Google) proposait donc un patch tout simple pour seccomp : à l'entrée du mode sécurisé, on fournit un masque de bits (bitmask) qui indique, pour chaque appel système, si oui ou non il sera autorisé.

Mais Ingo Molnar, un des principaux développeurs du noyau, avait une meilleure idée : plutôt qu'un bit oui/non, on pourrait contrôler les appels systèmes selon des filtres plus complexes, par exemple autoriser les read sur STDIN mais pas sur le reste. Il se trouve qu'Ingo avait tout récemment participé, avec moultes flamewars, à des modifications du code de tracing/monitoring du noyau (sous-systèmes ftrace et perf), qui implémentaient justement du filtrage sur les événements systèmes (compter le nombre de fois que read est appelé sur STDIN chaque seconde). Il propose donc de se baser sur les sous-systèmes de tracing pour permettre ces filtres beaucoup plus flexibles.

Remarque : pour plus d'information sur les événements de ftrace et son système de filtrage, vous pouvez regarder la documentation noyau, comme par exemple Documentation/trace/events.txt.

Cependant, cela demande du travail (beaucoup plus que le simple bitmask de départ) et tout le monde n'est pas convaincu par cette approche, donc Langley ne va pas plus avant et la modification de seccomp tombe dans l'oubli.

L'histoire avait déjà été résumée par un article LWN.net de l'époque : Seccomp and sandboxing, par Jonathan Corbet.

Le détour ftrace/perf

En janvier 2011, le développeur Eric Paris (Red Hat), qui travaille sur QEMU, s'intéresse indépendamment à seccomp ; après avoir implémenté, seul dans sa tanière, une approche par bitmask, il jette un œil à la liste de diffusion et tombe sur la discussion. Pour suivre les conseils d'Ingo Molnar, il implémente un début de filtrage dans ftrace et propose un petit patch expérimental. Il se voit répondre par des mainteneurs des systèmes de tracing (autres qu'Ingo) que ftrace n'est sans doute pas le bon endroit pour mettre de la sécurité, et que la couche LSM (Linux Security Modules) serait plus appropriée. C'est encore raté.

En avril 2011, Will Drewry (Google) revient à la charge et propose une vraie série de patchs utilisant l'approche proposée par Ingo : réutiliser le code de tracing qui a déjà des hooks sur tous les événements importants du noyau, en particulier les appels systèmes. Celui-ci est très impressionné : « j'apprécie cette approche, beaucoup plus que toutes les techniques de sandboxing que j'ai déjà rencontrées ».

La discussion sur le patch va bon train, avec en particulier des remarques sur l'implémentation du développeur (francophone) Frédéric Weisbecker, qui connaît bien les sous-systèmes de tracing. D'autres développeurs indiquent qu'ils sont intéressés par une telle fonctionnalité de sandboxing volontaire, par exemple ceux de vsftpd ou LXC. Will Drewry publie une deuxième version du patch, en intégrant les corrections demandées, mais Ingo Molnar n'est toujours pas satisfait. Will Drewry utilise le code de ftrace pour intercepter les appels systèmes et les filtrer, mais seulement en interne, il propose une interface propre. Ingo voudrait plus généralement permettre de faire des contrôles d'accès sur tous les éléments tracés, et pas seulement les appels systèmes, transformant ainsi le sous-système de tracing en une sorte de contrôle de sécurité flexible permanent.

Article LWN.net : Seccomp: replacing security modules?, Jonathan Corbet.

Will décide d'aller dans la direction demandée par Ingo mais rencontre une opposition féroce en la personne de Peter Zijlstra, co-mainteneur avec Ingo du sous-système perf, et qui refuse de mélanger tracing et sécurité. Après une belle flamewar avec Ingo, il annonce qu'il mettra son veto à toute version du patch qui utilise directement l'interface de tracing. Will propose de revenir en arrière, mais Ingo refuse : le patch utilisant l'interface de tracing est le plus court et le plus général, et donc forcément la bonne façon de faire, il refuse d'accepter une autre méthode. En juin, après neuf révisions de la série de patch, Will Drewry abandonne la bataille et admet que la situation est à nouveau bloquée.

Article LWN.net : Seccomp_filter : no clear path.

Malgré des essais de médiation de la part d'autres développeurs, et une table ronde organisée à ce sujet au Kernel Security Summit, la situation n'a pas beaucoup évolué en automne. En octobre, Łukasz Sowa, un étudiant, propose une autre méthode à base de cgroups, mais à part quelques réponses de Will Drewry il ne reçoit pas beaucoup de retours.

La nouvelle approche, par le Berkeley Packet Filter

Le 11 janvier 2012, alors que les franchouillards s'apprêtent à se ruer sur leurs forfaits Free Mobile, Will Drewry fait une opération père-noël en retard avec l'annonce d'une nouvelle approche, relativement saugrenue, pour filtrer les appels systèmes dans seccomp : réutiliser du code de filtrage des paquets réseau (Berkeley Packet Filter) !

Le BPF, qui vient du monde BSD, propose au développeur de construire des filtres sophistiqués en assemblant des petits programmes dans un langage dédié au filtrage, comprenant des tests conditionnels sur des « registres » (remplis avec les métadonnées du paquet réseau inspecté) et des sauts vers d'autres tests ou la décision d'accepter, refuser ou rediriger le paquet. Ces programmes-filtres sont interprétés par le système réseau, et même compilés vers l'assembleur dans certaines implémentations pour plus de performance. Will Drewry réutilise cette logique de filtrage, mais en remplissant les registres non pas avec les métadonnées d'un paquet réseau, mais avec le numéro et les arguments de l'appel système en cours. Plus besoin du code de filtrage de ftrace, et on peut se passer complètement du sous-système de tracing. Will Drewry doit avoir de grands espoirs que cette approche soit acceptée, car il se permet même de dire qu'après réflexion, il pense que réutiliser le tracing n'est pas une bonne idée — perdant ainsi son droit de retour en arrière.

Pour l'instant, les retours sont bons. Il y a des subtilités sur le traitement des changements de contexte, en particulier de l'appel d'exécutables setuid depuis un programme ayant des privilèges restreints. Linus Torvalds est intervenu, sans casser de sucre directement sur le travail de Drewry, ce qui est bon signe. Rien n'est encore gagné, mais il est donné d'espérer que cette approche permette l'intégration d'un mécanisme de sandbox flexible au noyau Linux.

Bien sûr, cela n'est pas directement lié à Capsicum et ça n'est pas encore aussi riche : un seccomp flexible permettrait d'empêcher le gain d'autorité ambiante, mais il n'est pas possible pour l'instant (et ce n'est pas dans le champ de vision des gens qui discutent ces patches) de transférer des privilèges dynamiquement, comme le permettent les descripteurs de fichier enrichis de Capsicum. Ça reste un excellent pas en avant pour permettre aux développeurs de limiter d'eux-mêmes le risque de sécurité et la surface d'attaque de leurs applications — ce qu'Andy Lutomirski appelle en plaisantant le « Voluntary Access Control ».

Aller plus loin

	
[LWN] Seccomp filters: no clear path
(94 clics)

	
[lkml] dynamic seccomp policies (using BPF filters)
(64 clics)

	
[linuxfr] Capsicum, une séparation fine des privilèges pour UNIX
(166 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections26.png

