

Présentation d'Ansible et version 2 à venir

Posté par yannig (site web personnel) le 05 avril 2015 à 22:33.
Édité par Bruno Michel, Xavier Teyssier, Benoît Sibaud, Florent Zara, ZeroHeure, palm123 et bubar🦥.
Modéré par Florent Zara.
Licence CC By‑SA.

Étiquettes :

	ansible

	devops

	déploiement

[image: Technologie]

Ansible est un outil de la mouvance actuelle autour du DevOps. J'ai commencé à aborder son fonctionnement il y a maintenant quelques mois et force est de constater que sa prise en main est beaucoup plus simple que d'autres produits ayant la même finalité, ceci pour plusieurs raisons :

	l'apprentissage du langage est très rapide ;

	il n'y a pas d'infrastructure à gérer : pas de serveur central (j'y reviendrai un peu plus tard) et surtout pas d'agent.

[image: logo Ansible]

Sommaire

	Pas d'agent

	Installation

	Première utilisation

	
Création d'un premier playbook
	Notre premier playbook

	Lancement du playbook

	Introduction du handler

	
Nouveautés v2
	Bloc d'instructions

	Gestion des exceptions

Pas d'agent

Et oui, ni agent Puppet/Chef et ni Puppet master/server à installer. À partir du moment où vous avez un serveur SSH sur votre machine à gérer, elle est potentiellement éligible à la gestion via Ansible. Même la machine permettant de lancer les opérations Ansible peut n'être qu'un banal poste Linux avec les ouvertures de flux qui vont bien.

L'autre gros point positif vient du langage en lui même qui est très simple à aborder. Pour faire une analogie, on retrouve le pouvoir descriptif d'un Puppet sans l'aspect prise de tête (les dépendances). En effet, un playbook Ansible exécute ses opérations séquentiellement. Pas besoin de dire que la création de l'utilisateur tif dépend du groupe poil : il suffit de le déclarer en premier et le groupe sera créé en premier.

Les seuls aspects que je trouve perfectibles viennent de l'expressivité du langage (qui reste pour l'instant inférieur à Puppet par exemple) et la vitesse d'exécution qui est là encore en deça d'un Agent Puppet (surtout sur les tâches complexes).

Pour info, avant de faire de l'Ansible, j'ai fait pas mal de choses avec Puppet pour industrialiser des déploiements de serveurs d'application (type java J2EE). Là où l'agent Puppet ne repassera pas sur les éléments déjà présents et/ou conformes, Ansible procédera à une vérification séquentielle qui peut être significativement plus longue. Mais bon, je vous rassure, ça reste généralement très acceptable.

Installation

Plusieurs solutions possibles pour l'installation :

	via l'utilisation de package rpm ou deb ;

	via l'utilisation de pip install ;

	enfin directement à l'aide du code source.

Sous RHEL/CentOS, après avoir activé les ressources epel, il suffira de l'installer avec la commande suivante :

yum install ansible

Sous Ubuntu, il faut ajouter la source ppa ansible avec la commande suivante :

sudo apt-add-repository ppa:ansible/ansible

Suivi du traditionnel apt-get update/install :

apt-get update && apt-get install ansible.

Pour l'installation à l'aide de pip, il faut utiliser la commande suivante :

pip install ansible

Enfin, pour l'utilisation via le code source, il vous faudra exécuter un git clone :

git clone git://github.com/ansible/ansible.git
cd ansible
make install

Première utilisation

Nous allons créer un fichier hosts dans le répertoire courant de l'utilisateur avec la liste des machines que nous allons gérer :

localhost ansible_connection=local

[backup]
robert

[desktop]
gertrude

Ce fichier d'inventaire indique que robert servira à faire des sauvegardes et gertrude sera une bête machine desktop (mon poste de travail). Pour la machine localhost, nous avons ajouté l'option ansible_connection=local pour indiquer qu'il s'agit d'une machine accessible directement en local sans passer par une connexion SSH.

Il nous faut maintenant configurer la communication SSH avec les machines à gérer. Pour ce faire, nous allons échanger les clés SSH avec les différentes machines distantes. Pour ma part, j'utilise beaucoup la commande ssh-copy-id pour initier cet échange de clés, mais rien ne vous empêche de le faire par le mécanisme qu'il vous plaira (et bien sûr, on peut aussi le faire avec Ansible pour peu que l'on dispose de l'utilitaire sshpass).

Exemple d'échange de clés entre mon utilisateur et la machine distante robert en tant que root :

ssh-copy-id root@robert

NB : pour éviter d'ajouter root@ devant robert, je fais souvent appel au fichier ~/.ssh/config. En effet, il est possible de spécifier l'utilisateur par défaut. Ci-dessous un exemple pour la machine robert :

Host robert
 User root

Maintenant que notre échange de clés est réalisé, il est possible de faire un test de création de fichier avec la commande suivante :

ansible -i hosts -l localhost -m file -a "path=/tmp/test state=touch" all

Dans ce test, nous allons appeler le module file afin de créer un fichier vide /tmp/test sur la machine localhost (grâce à l'option de restriction -l localhost). Si tout se passe bien, nous devrions avoir le résultat suivant sur la ligne de commande :

$ ansible -i hosts -l localhost -m file -a "path=/tmp/test state=touch" all
localhost | success >> {
 "changed": true,
 "dest": "/tmp/test",
 "gid": 1000,
 "group": "yannig",
 "mode": "0644",
 "owner": "yannig",
 "size": 0,
 "state": "file",
 "uid": 1000
}

Rien de particulier à signaler, mais vous pouvez maintenant lancer n'importe quel module Ansible. Vous pourriez tout à fait imaginer lancer un arrêt/relance de démon ou la mise à jour d'un paquet système suite à la découverte d'une nouvelle faille SSL/NTP/DNS/noyau (rayer la mention inutile).

Pour faire une analogie avec Puppet, il s'agit de l'équivalent de mcollective (sans l'aspect middleware de communication puisque tout passe par SSH).

Création d'un premier playbook

Nous avons maintenant la possibilité de lancer des opérations unitaires. Passons alors à l'écriture d'un premier playbook qui va nous permettre de chaîner un ensemble d'opérations.

Notre premier playbook

Pour ce faire, nous allons écrire un playbook qui va mettre à jour la configuration du serveur de temps de notre machine. Les opérations sont assez simples et vont consister à :

	s'assurer de la présence du package ntpd sur la machine ;

	mettre à jour le fichier /etc/ntp.conf ;

	faire un arrêt/relance le cas échéant.

Vous vous en doutez, ces opérations se réalisent en trois lignes de description Ansible. Pour simplifier les choses, nous nous mettrons uniquement dans le contexte d'une distribution de type RHEL/CentOS/Fedora. Voici cette première version :

Playbook de gestion de NTP
- name: "NTP configuration"
 hosts: all
 remote_user: root
 tasks:
 - name: "NTP package"
 yum: name=ntp state=installed
 - name: "NTP configuration"
 template: src=ntp.conf.j2 dest=/etc/ntp.conf
 - name: "NTP restart"
 service: name=ntpd state=restarted enabled=yes

Il faudra également stocker le fichier ntp.conf.j2 au même emplacement. Ci-dessous son contenu :

#{{ ansible_managed }}

driftfile /var/lib/ntp/drift
restrict default nomodify notrap nopeer noquery
restrict 127.0.0.1
restrict ::1
{% for i in ntp_servers %}
server {{ i }}
{% endfor %}

includefile /etc/ntp/crypto/pw
keys /etc/ntp/keys
disable monitor

Nous allons également ajouter un fichier group_vars/all (au même niveau que le fichier hosts) avec le contenu suivant afin de pouvoir gérer la liste de serveur NTP :

ntp_servers: ["192.168.0.1", "192.168.0.2"]

Lancement du playbook

Un rapide lancement pour voir ce que ça donne :

$ ansible-playbook -i hosts -l robert ntp.yml

PLAY [NTP configuration] **

GATHERING FACTS ***
ok: [robert]

TASK: [NTP package] ***
changed: [robert]

TASK: [NTP configuration] ***
changed: [robert]

TASK: [NTP restart] ***
changed: [robert]

PLAY RECAP **
robert : ok=4 changed=3 unreachable=0 failed=0

Comme on peut le voir, ça semble bien fonctionner. Relançons notre playbook pour voir le comportement d'Ansible :

$ ansible-playbook -i hosts -l robert ntp.yml

PLAY [NTP configuration] **

GATHERING FACTS ***
ok: [robert]

TASK: [NTP package] ***
ok: [robert]

TASK: [NTP configuration] ***
ok: [robert]

TASK: [NTP restart] ***
changed: [robert]

PLAY RECAP **
robert : ok=4 changed=1 unreachable=0 failed=0

Petit problème : le serveur NTP est systématiquement relancé alors que notre fichier de configuration n'a pas bougé…

Introduction du handler

Pour éviter cet arrêt/relance intempestif, la méthode la plus naturelle est de passer par un mécanisme de handler. Voici ce que ça donne dans notre cas :

Playbook de gestion de NTP
- name: "NTP configuration"
 hosts: all
 remote_user: root
 tasks:
 - name: "NTP package"
 yum: name=ntp state=installed
 - name: "NTP configuration"
 template: src=ntp.conf.j2 dest=/etc/ntp.conf
 # Notification du handler de redémarrage
 notify: "NTP restart"

 # Section handler
 handlers:
 - name: "NTP restart"
 service: name=ntpd state=restarted enabled=yes

Relançons maintenant notre playbook :

$ ansible-playbook -i hosts toto.yml

PLAY [NTP configuration] **

GATHERING FACTS ***
ok: [robert]

TASK: [NTP package] ***
ok: [robert]

TASK: [NTP configuration] ***
ok: [robert]

PLAY RECAP **
robert : ok=3 changed=0 unreachable=0 failed=0

Nous voyons que le redémarrage n'a plus lieu, évitant des opérations inutiles.

Nouveautés v2

La progression du projet Ansible a été très rapide et, comme souvent, l'évolution a été un peu anarchique. Partant de ce constat, les auteurs ont donc eu besoin de remettre les choses à plat. Il s'agit pour l'essentiel d'une réécriture, mais la version 2 apportera également quelques nouveautés. À noter que les auteurs assurent qu'il ne devrait pas y avoir de régression sur les playbooks existants.

Bloc d'instructions

Un des plus gros défauts du langage d'Ansible vient de la gestion des boucles. Prenons un exemple tout simple en créant une liste d'utilisateurs. Cette opération peut se réaliser à l'aide du playbook suivant :

Playbook de création d'utilisateurs
- name: "Création d'utilisateurs"
 hosts: all
 remote_user: root
 vars:
 - users_to_create: ['alain', 'gerard']
 tasks:
 - name: "Creation des utilisateurs"
 user: name={{item}}
 # Boucle sur les utilisateurs
 with_items: users_to_create

Maintenant, si nous voulons en profiter pour mettre à jour le fichier bash profile, nous allons devoir procéder avec une seconde boucle :

 tasks:
 - name: "Creation des utilisateurs"
 user: name={{item}}
 # Boucle création utilisateurs
 with_items: users_to_create
 - name: "MAJ profile"
 template: src=profile.j2 dest=/home/{{item}}/.bash_profile
 # Boucle MAJ profile utilisateurs
 with_items: users_to_create

Bref, il manque une notion d'itération sur un ensemble d'instructions. Cette prochaine version devrait y répondre. Ci-dessous un exemple de ce que devrait pouvoir offrir la version 2 d'Ansible :

 tasks:
 - include: instructions.yml user={{item}}
 with_items: users_to_create

Avec le fichier instructions.yml contenant les instructions suivantes :

- name: "Creation des utilisateurs"
 user: name={{item}}
- name: "MAJ profile"
 template: src=profile.j2 dest=/home/{{item}}/.bash_profile

Ci-dessous un exemple de lancement avec la version actuelle d'Ansible v2 :

$ ansible-playbook test/bloque.yml -l localhost -c local

PLAY: Création d'utilisateurs **

TASK [setup] **
ok: [localhost]

TASK [include user={{item}}] **
{'item': u'alain', 'include': u'instructions.yml', 'include_variables': {u'user': u'alain'}, 'changed': True}
{'item': u'gerard', 'include': u'instructions.yml', 'include_variables': {u'user': u'gerard'}, 'changed': True}
included: instructions.yml for localhost

TASK [Creation des utilisateurs] **
ok: [localhost]

TASK [MAJ profile] **
ok: [localhost]

TASK [Creation des utilisateurs] **
ok: [localhost]

TASK [MAJ profile] **
ok: [localhost]

PLAY RECAP **
localhost : ok=6 changed=1 unreachable=0 failed=0

Gestion des exceptions

Dans la même idée, Ansible devrait voir arriver la gestion des exceptions. Ci-dessous un exemple faisant appel à cette nouvelle notion :

Playbook d'exception
- name: "Test exception"
 hosts: "all"
 tasks:
 - block:
 - command: "/bin/false"
 - debug: msg="Ceci n'est pas lance"
 rescue:
 - debug: msg="Nous avons eu une exception"
 - command: "/bin/false"
 - debug: msg="Nous ne pouvons pas etre ici"
 always:
 - debug: msg="Dans tous les cas, nous passons ici"

Ci-dessous le résultat de l'exécution de ce playbook :

$ ansible-playbook exception.yml -l localhost -c local

PLAY: Test exception **

TASK [setup] **
ok: [localhost]

TASK [command] **
fatal: [localhost]: FAILED! => {"changed": true, "end": "2015-04-05 10:44:04.632739", "stdout": "", "cmd": ["/bin/false"], "start": "2015-04-05 10:44:04.631280", "delta": "0:00:00.001459", "stderr": "", "rc": 1, "invocation": {"module_name": "command", "module_args": {"_raw_params": "/bin/false"}}, "stdout_lines": [], "warnings": []}

TASK [debug msg=Nous avons eu une exception] ************************************
ok: [localhost] => {
 "msg": "Nous avons eu une exception",
 "changed": false
}

TASK [command] **
fatal: [localhost]: FAILED! => {"changed": true, "end": "2015-04-05 10:44:05.031018", "stdout": "", "cmd": ["/bin/false"], "start": "2015-04-05 10:44:05.028723", "delta": "0:00:00.002295", "stderr": "", "rc": 1, "invocation": {"module_name": "command", "module_args": {"_raw_params": "/bin/false"}}, "stdout_lines": [], "warnings": []}

TASK [debug msg=Dans tous les cas, nous passons ici] ****************************
ok: [localhost] => {
 "msg": "Dans tous les cas, nous passons ici",
 "changed": false
}

PLAY RECAP **
localhost : ok=3 changed=0 unreachable=0 failed=2

Aller plus loin

	
Ansible
(1121 clics)

	
Documentation sur Ansible
(584 clics)

	
Ansible Galaxy
(206 clics)

	
Nouveautés à venir de Ansible v2
(358 clics)

	
Ansible weekly neews
(105 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/2eba7ccfd91f1c276d38f68da5bcd1dbe750bb75fd7a4b4d7e864bdb.png
ANSIBLE

EPUB/imagessections50.png

