

Les entrailles d’un interpréteur CSS très rapide : Quantum CSS (alias Stylo)

Posté par Adrien Dorsaz (site web personnel, Mastodon) le 31 août 2017 à 13:35.
Édité par _jordan_, Davy Defaud, Benoît Sibaud, palm123, ZeroHeure, R. Danell Olivaw et matteli.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	css

	quantum

	rust

	mozilla

	stylo

	gecko

	concurrence

[image: Mozilla]

Cet été, Lin Clark a publié un article assez détaillé sur le fonctionnement du nouvel interpréteur CSS qui sera utilisé par les futures versions de Firefox.

Comme l’article est assez détaillé et qu’il révèle ce qui fait la magie de Rust et du projet Quantum, nous avons décidé de vous proposer une traduction dans la suite de la dépêche.

Veuillez noter que l’article original est sous licence _Creative Common Attribution — Partage dans les mêmes conditions 3.0 non transposé, cette dépêche suit donc les mêmes règles.

Sommaire

	
Les entrailles d’un interpréteur CSS très rapide : Quantum CSS (alias Stylo), par Lin Clark
	Que fait un moteur CSS ?

	Faire correspondre les sélecteurs CSS aux nœuds DOM

	
La cascade de styles
	Quelques précisions : le partage des structures de style

	Maintenant, comment peut‐on faire tout ça rapidement ?

	Tout faire en parallèle

	Accélérer les recalculs de style avec l’arbre des règles

	Accélérer le rendu initial (et la cascade) avec le cache partagé des styles

	Conclusion

Les entrailles d’un interpréteur CSS très rapide : Quantum CSS (alias Stylo), par Lin Clark

Vous avez sûrement entendu parler du projet Quantum… C’est une réécriture majeure des entrailles de Firefox pour le rendre rapide. Nous intégrons actuellement dans Firefox des parties de notre navigateur Web expérimental, Servo, et nous faisons d’importantes améliorations sur d’autres parties.

Le projet peut être illustré par le remplacement en vol des pièces d’un jet. Les changements se font sur place, pièce par pièce, pour que vous puissiez voir les résultats dans Firefox le plus tôt possible dès qu’une pièce est prête.

[image: Projet Quantum illustré par un réacteur]

Et le premier composant majeur de Servo — un nouveau moteur CSS appelé Quantum CSS (connu auparavant sous le nom de Stylo) — est maintenant en cours de test dans la version Nightly de Firefox. Vous pouvez vérifier que le nouveau moteur est activé chez vous : dans la page about:config, vérifiez que le paramètre layout.css.servo.enabled est à true.

Ce nouveau moteur rassemble les innovations de l’état de l’art de quatre navigateurs Web différents pour créer un super interpréteur CSS.

[image: Quantum CSS est nourri par 4 navigateurs Web]

Il profite des matériels modernes en parallélisant le travail à travers tous les cœurs de votre machine. Il peut donc fonctionner deux, quatre ou même dix‐huit fois plus rapidement.

En plus de cette amélioration, il combine l’état de l’art des optimisations utilisées par les autres navigateurs Web. Ainsi, même si la parallélisation n’est pas utilisée, il s’agira toujours d’un moteur CSS rapide.

[image: Course de jets]

Mais que fait un moteur CSS ? Commençons par inspecter le moteur CSS et comment il s’insère dans le reste du navigateur. Ensuite, nous verrons comment Quatum CSS fait pour tout accélérer.

Que fait un moteur CSS ?

Le moteur CSS est une partie du moteur de rendu du navigateur. Le moteur de rendu prend le code HTML et les fichiers CSS d’un site Web et les transforme en pixels sur l’écran.

[image: Des fichiers aux pixels]

Chaque navigateur Web a son propre moteur de rendu. Dans Chrome, il s’appelle Blink. Dans Edge, c’est EdgeHTML. Dans Safari, il s’agit de WebKit. Et dans Firefox, il s’appelle Gecko.

Pour passer des fichiers aux pixels, tous ces moteurs de rendu font essentiellement les mêmes étapes :

	Analyser les fichiers et les transformer en objets que le navigateur peut comprendre, dont le DOM. À cette étape, le DOM connaît déjà toute la structure de la page. Il sait tout sur les relations parents‐enfants entre les éléments. En revanche, il ne connaît pas l’aspect visuel de chacun de ces éléments.
[image: Analyser le code HTML et en créer un arbre DOM]

	Comprendre comment les éléments devraient apparaître. Pour chaque nœud DOM, le moteur CSS recherche les règles CSS à appliquer. Ensuite, il retrouve la valeur de chacune des propriétés CSS pour ce nœud DOM.
[image: Styliser chaque nœud de l’arbre DOM en leur attachant le style calculé]

	Mesurer les dimensions pour chaque nœud et leur emplacement sur l’écran. Des boîtes sont créées pour chaque chose qui peut être affichée à l’écran. Les boîtes ne représentent pas seulement les nœuds DOM, vous avez aussi des boîtes pour des choses à l’intérieur des nœuds DOM, comme des lignes de texte.
[image: Mesurer toutes les boîtes pour créer un arbre de frame]

	Dessiner les différentes boîtes. Ça peut se passer sur plusieurs calques. Je me représente ça comme les anciennes animations peintes à la main, avec différents papiers calques superposés comme une peau d’oignon. Ça permet de modifier juste un calque sans avoir à tout redessiner.
[image: Dessiner chaque calque]

	Prendre ces différents calques, appliquer les propriétés de composition — comme transform — et les transformer en image. C’est essentiellement comme prendre une photo des calques posés les uns sur les autres. Cette image est ensuite rendue sur l’écran.
[image: Rassembler les calques et prendre une photo]

Ainsi, quand il commence à calculer les styles, le moteur CSS a deux outils à disposition :

	un arbre DOM ;

	une liste de règles de style.

Il parcourt tous les nœuds DOM, un par un, et pour chaque nœud il retrouve les styles associés. Durant ce processus, il donne au nœud DOM une valeur pour toutes les propriétés CSS, même si les feuilles de style ne déclarent pas de valeur pour certaines propriétés.

Je l’imagine comme une personne qui parcourt un formulaire et le remplit. Il a besoin de remplir un formulaire pour chacun des nœuds DOM. Et pour chacune des questions, il doit avoir une réponse.

[image: Formulaire avec propriétés CSS sans valeurs]

Pour le remplir, le moteur CSS a besoin de faire deux choses :

	trouver quelles règles s’appliquent au nœud ­— c’est‐à‐dire faire correspondre les sélecteurs CSS aux nœuds DOM ;

	remplir toutes les valeurs manquantes avec les valeurs du parent ou une valeur par défaut — c’est‐à‐dire cascader les styles.

Faire correspondre les sélecteurs CSS aux nœuds DOM

Durant cette étape, nous allons ajouter chaque règle qui correspond au nœud DOM dans une liste. Comme plusieurs règles peuvent correspondre, il pourrait y avoir plusieurs déclarations de valeur pour une même propriété.
[image: Personne qui coche chaque règle CSS correspondante au nœud DOM]

En plus des règles déclarées par le code du site, le navigateur ajoute lui‐même certaines CSS par défaut (appelées feuilles de style user agent).

Comment est‐ce que le moteur CSS peut choisir quelle valeur doit être utilisée avec ces multiples déclarations ?

C’est ici que le principe de la spécificité des déclarations CSS intervient. Le moteur CSS crée en gros une feuille de calcul avec pour chaque ligne une déclaration CSS. Ensuite, il ordonne les lignes selon différentes colonnes.
[image: Déclarations dans un tableur]

La règle CSS définie avec la plus grande spécificité gagne. Ainsi, depuis cette feuille de calcul, le moteur CSS est capable de remplir les valeurs dans le formulaire. Pour l’instant, il ne remplit que les valeurs déclarées explicitement par des règles du code CSS du site.
[image: Formulaire avec quelques propriétés CSS remplies]

Pour le reste, il va devoir utiliser la cascade.

La cascade de styles

Le principe de la cascade rend le code CSS plus facile à écrire et maintenir. Grâce à la cascade, vous pouvez paramétrer la propriété color une fois sur le corps de la page <body/> et vous savez que le texte des éléments <p/>, et utilisera la même couleur (à moins de faîre une règle plus précise qui remplacera cette valeur).

Pour arriver à ce résultat, le moteur CSS regarde tous les blancs qui restent dans le formulaire. Si une propriété hérite par défaut de la valeur de l’élément parent, alors le moteur CSS remonte l’arbre DOM et regarde si le parent a une valeur. Si aucune valeur n’est déclarée pour le parent ou si une propriété n’hérite pas, il utilise la valeur par défaut.
[image: Formulaire avec toutes les propriétés CSS remplies]

Maintenant tous les styles ont été calculés pour ce nœud DOM.

Quelques précisions : le partage des structures de style

Le formulaire que je vous ai montré est une simplification. Le standard CSS a des centaines de propriétés. Si le moteur CSS tenait pour chaque nœud DOM la liste de chaque propriété avec une valeur, il serait rapidement à court de mémoire.

Ainsi, au lieu de tenir de tels formulaires, les moteurs utilisent généralement ce qu’on appelle le partage des structures de style. Ils enregistrent les données qui vont habituellement ensemble (comme toutes les propriétés de police d’écriture) dans un même objet appelé structure de style. Ensuite, plutôt que d’avoir toutes les propriétés dans un même objet pour un nœud, l’objet contenant le style calculé du nœud est un ensemble de pointeurs. Pour chaque catégorie de propriétés, il y a un pointeur vers une structure de style qui a les bonnes valeurs pour ce nœud DOM.
[image: Parties de formulaires retirées dans des objets séparés]

Cette technique permet à la fois de réduire l’espace mémoire et le temps de traitement nécessaire. Tous les nœuds qui ont des propriétés proches (comme les jumeaux) peuvent simplement pointer vers les mêmes structures pour les propriétés partagées. Et comme beaucoup de propriétés sont héritées, un ancêtre peut partager une structure avec tous ses descendants qui n’ont pas de déclaration de valeur plus spécifique.

Maintenant, comment peut‐on faire tout ça rapidement ?

Voici à quoi ressemblent les calculs de style si vous ne les avez pas optimisés.
[image: Les étapes de calcul de style CSS : connexion des sélecteurs, ordonnancement par spécificité et calcul des valeurs de propriété]

Il y a beaucoup de travail à exécuter ici. Et pas seulement au premier chargement de la page. Le travail doit être refait encore et encore tant que l’utilisateur interagit avec la page, en passant la souris par‐dessus des éléments (hover) ou en modifiant le DOM, déclenchant à nouveau le calcul des styles.
[image: Création initiale de style et recréation pour le recouvrement de la souris, l’ajout de nœud DOM, etc]

Ainsi, le calcul des styles CSS est un très bon candidat pour l’optimisation et les navigateurs ont testé différentes stratégies pour l’optimiser durant ces vingt dernières années. Ce que Quantum CSS fait est de prendre le meilleur des stratégies des différents moteurs, de les combiner et de créer un nouveau moteur très rapide.

Examinons donc en détail comment faire fonctionner ensemble ces stratégies.

Tout faire en parallèle

Le projet Servo (d’où vient le moteur Quantum CSS) est un navigateur expérimental qui essaie de paralléliser toutes les différentes parties de la création de rendu d’une page Web. Qu’est‐ce que ça signifie ?

Un ordinateur ressemble à un cerveau. Il y a une partie qui pense (l’ALU). Très proche de celle‐ci, il y a une mémoire à court terme (les registres). Ces parties rassemblées forment le processeur (CPU). Ensuite, il y a la mémoire à long terme, la mémoire vive.
[image: CPU avec ALU (la partie qui fait le job) et les registres (mémoire à court terme)]

Les premiers ordinateurs ne pouvaient penser qu’à une chose à la fois en utilisant ce CPU. Mais ces dernières années, les CPU ont évolué pour avoir plusieurs ALU et registres, regroupés en cœurs. C’est‐à‐dire que le CPU peut penser à plusieurs choses en même temps ­— en parallèle.
[image: Processeur avec plusieurs cœurs contenant chacun des ALU et des registres]

Quantum CSS utilise cette fonctionnalité récente sur les ordinateurs en partageant le calcul des styles pour les différents nœuds DOM à travers les différents cœurs.

Ça paraît être facile à faire… Simplement partager les branches de l’arbre DOM et les envoyer aux différents cœurs. C’est en réalité beaucoup plus difficile, et ce pour plusieurs raisons. Une de ces raisons est que l’arbre DOM est souvent déséquilibré. Ainsi, un cœur aura beaucoup plus de travail que les autres.
[image: Arbre DOM déséquilibré qui sera partagé non équitablement entre plusieurs cœurs]

Pour répartir le travail plus équitablement, Quantum CSS utilise une technique nommée le vol de travail. Quand un nœud DOM est en train d’être analysé, le code reprend ses enfants directs et les partage en une ou plusieurs « unités de travail ». Ces unités de travail sont mises dans une queue.
[image: Les cœurs segmentent leur travail en unités de travail]

Quand un cœur finit le travail de sa queue, il regarde la queue des autres pour trouver plus de travail à faire. Ainsi, nous pouvons séparer équitablement le travail sans perdre du temps pour traverser l’arbre et chercher comment l’équilibrer à l’avance.
[image: Les cœurs qui ont terminé leur travail volent celui du cœur avec le plus de job]

Dans la plupart des navigateurs, il serait très difficile de bien le faire. Le parallélisme est un problème connu pour être difficile et le moteur CSS est très complexe. Il s’insère aussi entre les deux autres parties les plus complexes d’un moteur de rendu ­— le DOM et l’affichage. Ainsi, il est très facile de créer des bogues et, quand le parallélisme engendre des bogues, qui sont très difficiles à résoudre, ils sont appelés « courses de données » (data races). J’approfondis les explications sur ce type de problèmes dans un autre article.

N. D. M. : voir cette discussion pour plus de détails sur les différences entre data race (« course de données ») et race condition (« concurrence critique » ou « situation de compétition »).

Quand vous acceptez des contributions de centaines ou de milliers d’ingénieurs, comment pouvez‐vous créer un programme parallélisé sans être effrayé ? C’est pour ça que nous avons Rust.
[image: Logo Rust]

Avec Rust, vous pouvez vérifier statiquement que vous n’aurez pas de courses de données. C’est‐à‐dire que vous empêchez l’apparition de bogues difficiles à résoudre, simplement en vous empêchant de les créer dans votre code dès le début. Le compilateur ne vous laissera pas faire. Je suis en train d’écrire d’autres articles à ce sujet. Pour l’instant, vous pouvez voir cette vidéo d’introduction au sujet du parallélisme dans Rust ou celle‐ci, qui est une discussion plus détaillée sur le vol de travail.

Avec tout ceci, le calcul des styles CSS évolue de ce que nous appelions « un difficile problème de parallélisme » à « de très petits problèmes bloquants pour une exécution en parallèle efficace ». C’est‐à‐dire que nous pouvons nous rapprocher d’une accélération linéaire en termes de vitesse. Si vous avez quatre cœurs dans votre machine, alors ça pourra s’exécuter presque quatre fois plus vite.

Accélérer les recalculs de style avec l’arbre des règles

Pour chaque nœud DOM, le moteur CSS doit traverser toutes les règles pour faire la correspondance des sélecteurs CSS. Pour la plupart des nœuds, les correspondances ne changeront pas souvent. Par exemple, si l’utilisateur passe la souris sur un parent, les règles qui y sont liées pourraient changer. Nous devons donc encore recalculer les styles pour ses descendants afin d’appliquer correctement les propriétés héritées. Mais les règles correspondant à ses descendants ne changeront probablement pas.

Ce serait mieux si nous pouvions simplement noter quelles règles correspondent à chaque descendant et ne pas avoir besoin de refaire le calcul des correspondances pour eux de nouveau… C’est ce que fait l’arbre des règles, emprunté du précédent moteur CSS de Firefox.

Le moteur CSS effectue la recherche des sélecteurs qui correspondent et ensuite les trie par spécificité. De ceci, il crée une liste chaînée de règles.

Cette liste sera ajoutée à l’arbre des règles.
[image: Une chaîne de règle à ajouter à l’arbre des règles]

Le moteur CSS essaie de conserver le plus petit nombre de branches dans l’arbre. Pour cela, il essaie de réutiliser une branche dès qu’il peut.

Si la plupart des sélecteurs dans une liste sont les mêmes que dans une branche existante, alors il suivra le même chemin. Mais il pourrait atteindre un point où la règle suivante dans la liste n’est pas dans cette branche de l’arbre. Seulement à ce point il ajoute une nouvelle branche.
[image: Le dernier élément de la chaîne doit être ajouté à l’arbre]

Le nœud DOM recevra un pointeur vers la règle qui a été insérée en dernier (dans cet exemple, la règle div#warning). C’est la plus spécifique.

Lors d’un recalcul de styles, le moteur fera une vérification rapide pour voir si le changement du parent modifie les règles qui correspondent aux enfants. Si les correspondances ne changent pas, alors pour tous les descendants, le moteur peut juste suivre le pointeur du nœud descendant pour obtenir la règle. De là, il peut remonter l’arbre jusqu’à la racine pour obtenir une liste complète de règles correspondantes, de la plus spécifique à la moins spécifique. Ça signifie qu’il peut complètement outrepasser les étapes de recherche de correspondance de sélecteurs et de leur tri.
[image: Outrepasser la correspondance des sélecteurs et leur tri par spécificité]

Ainsi, cela aide à réduire le travail nécessaire durant le recalcul de styles. Mais il y a encore beaucoup de travail pour le premier calcul de styles. Si vous avez 10 000 nœuds, vous devez toujours faire la recherche de correspondance des sélecteurs 10 000 fois. Mais il y a un autre moyen d’accélérer tout ceci.

Accélérer le rendu initial (et la cascade) avec le cache partagé des styles

Pensez à une page avec des milliers de nœuds. Beaucoup de ces nœuds correspondront aux mêmes règles. Par exemple, pensez à un long article Wikipédia ; les paragraphes dans le contenu principal devraient tous suivre exactement les mêmes règles et avoir donc les mêmes styles calculés.

S’il n’y avait pas d’optimisation, alors le moteur CSS devrait faire la correspondance des sélecteurs et calculer les styles pour chaque paragraphe individuellement. Mais s’il y avait un moyen pour prouver que les styles seront les mêmes d’un paragraphe à l’autre, alors le moteur ne devrait faire ce travail qu’une fois et il ferait pointer chaque nœud de paragraphe au même style calculé.

C’est ce que fait le cache partagé des styles, inspiré par Safari et Chrome. Après avoir traité un nœud, il met le style calculé dans le cache. Ensuite, avant de débuter le calcul de style du nœud suivant, il lance quelques vérifications pour voir s’il peut réutiliser les données du cache.

Ces vérifications sont :

	est‐ce que les deux nœuds ont les mêmes identifiants, classes, etc. ? Si oui, alors ils vont correspondre aux même règles ;

	pour ceux qui ne sont pas stylés depuis les sélecteurs — les styles inline par exemple —, est‐ce que les nœuds ont les mêmes valeurs ? Le cas échéant, les règles au‐dessus soit ne seront pas surchargées, soit elles seront surchargées, mais de la même manière ;

	est‐ce que les deux parents pointent vers le même objet de styles calculés ? Si oui, alors les valeurs héritées seront identiques.

[image: Les styles calculés sont partagés par leurs parentées et on leur demande si un cousin peut être paragé. Réponse : oui]

Ces vérifications ont été utilisées dès le début des premiers caches de styles partagés. Mais il y a beaucoup d’autres petits cas où les styles pourraient ne pas correspondre. Par exemple, si une règle CSS utilise le sélecteur :first-child, alors deux paragraphes ne pourraient pas correspondre, même quand les vérifications ci‐dessus suggèrent que oui.

Dans WebKit et Blink, le cache partagé de styles est abandonné dans ces cas et le cache n’est pas utilisé. Comme de plus en plus de sites utilisent ces sélecteurs modernes, l’optimisation a été de moins en moins utile, à tel point que l’équipe Blink l’a récemment enlevée. Mais il s’avère qu’il y a un moyen d’utiliser le cache de styles partagés avec ces changements.

Dans Quantum CSS, nous rassemblons tous ces sélecteurs bizarres et vérifions s’ils s’appliquent au nœud DOM. Ensuite, nous stockons les réponses avec des uns et des zéros. Si les deux éléments ont le même nombre de uns et de zéros, nous savons qu’ils correspondent effectivement.
[image: Un tableau de scores montrant les zéros et uns, chaque colonne est nommée avec des sélecteurs comme « :first-child »]

Si un nœud DOM peut partager des styles qui ont déjà été calculés, vous pouvez passer outre presque tout le travail. Comme les pages ont souvent beaucoup de nœuds DOM avec les mêmes styles, le cache de styles partagés peut économiser beaucoup de mémoire et vraiment accélérer les choses.

[image: Livraison de tout le travail]

Conclusion

C’est le premier grand transfert de technologie de Servo vers Firefox. Durant ce chemin, nous avons beaucoup appris sur la manière d’apporter du code moderne et performant écrit en Rust dans le cœur de Firefox.

Nous sommes vraiment enthousiastes d’avoir rendu disponible cette grosse pièce du projet Quantum aux utilisateurs pour qu’ils l’expérimentent directement. Nous sommes très heureux de vous laisser l’essayer et, si vous rencontrez le moindre problème, faites‐le nous savoir.

Aller plus loin

	
Inside a super fast CSS engine: Quantum CSS (aka Stylo)
(1844 clics)

EPUB/55f0c36a529e65f45e3ce724b12326b82c8a8931e8015fcd974ac542.png
Next we have a p tag

body { inside a div with the

font-size: 1.2em:;

margin: Quto;
width: 180px: messagde class...

3

p { So this one matches..

color: blue;

}
And this one..

message p {
color: white;

3

div {
margin: 0.5em;
3

div#warning {
background-color: midnightblue;

3

div#error {
background-color: red;
3

EPUB/1a334f2a23afc7290a9badd4fa5972ab5183ea1d9081d1aa8d132f37.png
author style sheets beat o~
more specific selectors beat

user agent sheets -
K/ 9 less specific ones

/

origin selector property value specificity

0101
em

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/bd60365683a28dedfa1a9c8629733228694086493277d757db67a9bd.png
VVQQ@

Gt iecececececté

EPUB/a1d985c456e01d0d4f2a278f10d592c611dcc24ac92d2501678c2dc0.png
match selectors

NS

sort declarations
by specificity

|

origin selector property value specificity

author message p
o e e oo

compute property values

COMPUTED STYLES

PLEASE PRINT CLEARLY IN BLACK INK

EPUB/081afa11e3e08ec488711b95c47fb94ece6c55493262a84af33e38fe.png

EPUB/9bd988965aeb59966f4bb661513431004e79216cf3d280c6d94b52bc.png

EPUB/c2086b30ee8a2544e01d6a88415dd870e7d09e8b606be157bcd92e70.png
STYLE

body {

color: grey;

hl {
color: blue;

font-size: 2em;
transform: skew(45deg);
will-change: transform;

p {
margin-top: 2em;

EPUB/32cc21f4687fb516a00472370f94f3aafe19712475da14a303d874d9.png
COMPUTED STYLES

PLEASE PRINT CLEARLY IN BLACK INK

MARGIN

top:
lef't:
bottom:
right:

family: block start:
block end:
inline start:

style:

variant caps:
weight: inline end:
size:

stretch:

EPUB/be40a1f72aeaf6e83715ba98a0ba13c9c60c3d828214c66bc97f7e61.png
div

P

(from user-agent) (from user-agent)

V

L+
]

(from user-agent)

EPUB/1ed6030760582d6e6d037cf34ec5f75870429519c96481423470f7e4.png
)

c—]
 I—
—

)

Well, this seems
a bit unfair

J

c—]
 I—
—

)

c—]
 I—
—

)

c—]
 I—
—

|

EPUB/eea87f8b9554e346e55f90b71ef777d538176cd6c85977c0c83e5e67.png
COMPOSITE & RENDER

AR Uhtahss,

Hi, I'm @linclark, and | make
@codecartoons. | also work in
ickl
click! Emerging Technologies at Mozilla.

EPUB/684a7ee8f0e88059303aded95e93a476302d26639ec9724d319bcc51.png
body

COMPUTED STYLES / \

div#nav div

COMPUTED STYLES \

section section

ATWN /1N

P P P P P P @ppppp

COMPUTED STYLES

LY IN BLACK INK

PLEASE PRINT CLEAR|
style struct #213 style struct #57

PADDING

Q: Can this p share styles
with previous p tags?

A: Yes.

EPUB/97eca38bbe4860724386fb1eb2e80def02d10f2fb4d6ae507da23c5f.png
PARSE

EPUB/dd53f9b7e1997426c34992284309b26d5e2b0ec0c9fdd7f81cccfdc6.png
div p
(from user-agent) (from user-agent)
@
N
/ RS

v
)00 o) {77
!

\--_-—_-_

(from user-agent)

since there's no match
for div#warning currently,
make a new branch

EPUB/857c9595685836b0ae5221cbd3595cc7000abbda8dc35c745459396c.png
PAINT

Code Cartoons

Hi, I'm @linclark, and | make
@codecartoons. | also work in
Emerging Technologies at Mozilla.

EPUB/ca2522f9d45449d5bf2f8d702e26da5da67783fafc1c2e2919cb857c.png
COMPUTED STYLES

PLEASE PRINT CLEARLY IN BLACK INK

MARGIN

top: 19.2px

left: Opx

bottom: 19.2px

right: Opx
family: serif block start: Opx

style: normal block end: Opx

variant caps: normal inline start: Opx
weight: 400 inline end: Opx

size: 19.2px

stretch: normal

EPUB/a4e9747da481a1cb7307503ac4f39b8160b74a9f2d4affd192f8bb97.png
Quantum CSS

(aka Stylo)

3
o
Lo
&
S
<
S
S
@]

Quantum
Compositor

Quantum DOM

EPUB/64f353538c9cbb5be758f37d45f6863f02a4e50f73a66fe7288c586c.png
LAYOUT

EPUB/imagessections33.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/0e5c4ba0b722c36397bc11cd6747b12170cdef10074ef583bf179afc.png
origin selector property value specificity

> [ww o o000

user-agent

margin-top 0,0,0,1
user-agent _ m

N

COLOR

COMPUTED STYLES

PLEASE PRINT CLEARLY IN BLACK INK

MARGIN

style struct #57

PADDING

EPUB/a085a561c7aba34de3ca9645a91d07afa160da6e3880cf050588f1f7.png

EPUB/3f12cc30f84eb17abe036d4e22b5d4dbb190cde6eb40332a4329161b.png
XS
0 IEEEIE i
o[1]1]ofofof1]o[1

EPUB/319c1f7c0bbb8376a641964cdd8e449c9793b2ca7f2a9c9749304c82.png

EPUB/d94874b1cf325a094220ffb29306476e456f991a85af6527e7ba0d5f.png
COMPUTED STYLES

PLEASE PRINT CLEARLY IN BLACK INK

COLOR MARGIN
e T

FONT PADDING

origin selector property value specificity
author .message p

5 ow we [ooor |
user-agent _ margin-top

div p
(from user-agent) (from user-agent)

N\

div#warning .message p

EPUB/757903e45422b2c197ff2fd62a360c7bce59970f4d54bd5abeee905c.png
COMPUTED SFYLES MARGIN

top: 19.2px
PLEASE PRINT ARLY IN BLACK INK left: Opx

bottom: 19.2px

MARG'N right: Opx

block start: Opx camily: £

o style: normal
inline start: Opx)
variant caps: normal

weight: 400
size: 19.2px

inline end: Opx

stretch: normal

EPUB/9bdbabf4cce740edcea30bcaa823b60a5757ab45ee65ab8f0d3d014c.png
Parallelism
from Servo lots and lots of tricky

tweaks and optimizations

/ from the Stylo team

(aka Stylo)

The Rule Tree The Style Sharing Cache

from Firefox from Chrome and Safari

EPUB/0dd11d817a2d62ad4b9e8b48bf88d3b15da05b9c7f5a24684f53651d.png
COMPUTED STYLES

PLEASE PRINT CLEARLY IN BLACK INK

MARGIN

top: 19.2px
left:

bottom: 19.2px
right:

family: block start:
block end:
inline start:

style:
variant caps:
weight: inline end:
size:

stretch:

EPUB/4b144167f8fc20f6749d798144b40e9db3a26cbeaecc0444d02d8ba8.png
the part
that does
the thinking

short term memory kAL

(aka Registers)

long term memory Kthe CPU

(aka RAM)

EPUB/c5882347ce8555447cfb054a67300faa409f4c5f2533a57721ef07c1.png

EPUB/237509e3f200eb51acc72a486d8fc591ac482885c257849d9571facb.png
initial render

