

G’MIC 1.6.8 : c’est déjà Noël pour les traiteurs d’images !

Posté par David Tschumperlé (site web personnel) le 11 décembre 2015 à 09:54.
Édité par Davy Defaud, Lucas, Benoît Sibaud, Florent Zara, jcr83 et palm123.
Modéré par Florent Zara.
Licence CC By‑SA.

Étiquettes :

	gimp

	krita

	tricot

	g'mic

	traitement_d'images

[image: Graphisme/photo]

La version 1.6.8 « X-Mas 2015 Edition » de G’MIC (GREYC’s Magic for Image Computing), infrastructure libre pour le traitement d’images, a été publiée lundi 7 décembre 2015. C’est l’occasion de vous présenter les avancées et les nouveautés introduites dans ce logiciel depuis la dernière dépêche LinuxFr.org sur ce sujet, rédigée pour la sortie de la version 1.6.2.0, il y a de cela huit mois environ. Sept versions se sont succédées depuis.

La deuxième partie de la dépêche détaille les quelques nouveautés introduites dans le greffon G’MIC pour GIMP, qui reste l’interface de G’MIC la plus utilisée aujourd’hui. Mais elle présente aussi quelques évolutions majeures plus techniques du framework, qui ont déjà permis d’élaborer de nouveaux effets intéressants, et qui promettent surtout de belles choses pour l’avenir.

Sommaire

	1. Le projet G’MIC

	
2. Améliorations propres au greffon G’MIC pour GIMP
	2.1. Importation et exportation via les tampons GEGL

	2.2. Prise en charge de l’UTF-8 dans les widgets

	2.3. Une interface plus réactive

	
3. Ajout de l’algorithme Patchmatch
	3.1. Inpainting : reconstruction d’image

	3.2. Re-synthèse de textures

	4. Un évaluateur d’expressions plus performant

	5. Vector Painting : Un exemple de construction d’un filtre simple, en partant de zéro.

	6. Des filtres et effets à foison !

	7. Autres améliorations et faits notables

	8. Et ensuite ?

1. Le projet G’MIC

[image: Mascotte et logo du projet G'MIC, framework libre pour le traitement d'image]
Fig .1.1. Mascotte et logo du projet G’MIC, framework libre pour le traitement d’images.

G’MIC est un projet libre ayant vu le jour en août 2008, dans l’équipe IMAGE du laboratoire GREYC (Unité Mixte de Recherche du CNRS située à Caen). Cette équipe est composée essentiellement d’enseignants‐chercheurs et de chercheurs travaillant dans le domaine du traitement d’images (ça c’est une sacrée coïncidence !). Le projet est distribué sous licence libre CeCILL.
G’MIC fournit plusieurs interfaces utilisateur pour la manipulation de données images génériques, à savoir des images ou des séquences d’images hyperspectrales 2D ou 3D à valeurs flottantes, ce qui inclut bien évidemment les images couleur classiques. Son interface la plus utilisée aujourd’hui est un greffon disponible pour le logiciel GIMP (qu’on peut qualifier de relativement « populaire », il comptabilise déjà plus de deux millions de téléchargements à ce jour).

[image: Aperçu du greffon G’MIC pour GIMP]
Fig. 1.2. Aperçu du greffon G’MIC pour GIMP.

G’MIC propose également une interface en ligne de commande, semblable aux outils CLI proposés par ImageMagick ou GraphicsMagick, qui permet de bien profiter de toutes ses capacités. Il existe aussi un service web G’MIC Online pour appliquer des effets sur vos images directement à partir d’un navigateur (qui a été réactualisé d’ailleurs). D’autres interfaces basées sur G’MIC sont développées (ZArt, un greffon pour Krita, des filtres pour Photoflow…) mais celles‐ci restent pour le moment plus confidentielles.

Toutes ces interfaces se basent sur la bibliothèque C++ libgmic qui est portable, à multiples fils d’exécution — multi‐thread — et thread-safe, via notamment l’utilisation d’OpenMP. La bibliothèque libgmic est elle‐même basée sur CImg, une bibliothèque C++ de traitement d’images générique plus « bas niveau », qui est développée dans la même équipe et qui existe depuis 1999 (et qui sort de façon synchronisée également en version 1.6.8). La bibliothèque libgmic implémente toutes les fonctions de calcul sur les images, et embarque son propre langage de script permettant aux utilisateurs avancés d’y ajouter leurs fonctions personnalisées de traitement d’images.

Aujourd’hui, G’MIC interprète plus de 900 commandes de traitement différentes, toutes paramétrables, pour une bibliothèque d’environ 5,5 Mio correspondant à un peu plus de 100 000 lignes de code source. Ces commandes couvrent un large spectre du traitement d’images, en proposant des algorithmes pour la manipulation géométrique, les changements colorimétriques, le filtrage d’images (débruitage, rehaussement de détails par méthodes spectrales, variationnelles, non locales…), l’estimation de mouvement ou le recalage, l’affichage de primitives (y compris des objets 3D maillés), la détection de contours ou la segmentation, le rendu artistique, etc. C’est donc un outil très générique aux usages variés, très utile d’une part pour convertir, visualiser et explorer des données images, et d’autre part pour construire des pipelines personnalisés et élaborés de traitements d’images.

Pour en apprendre un peu plus sur les motivations et les buts du projet G’MIC, on ne peut que conseiller d’aller feuilleter le diaporama de présentation du projet qui ont été mis à jour récemment et qui contiennent de nombreux exemples de choses qu’il est possible de réaliser avec cette boîte à outils.

Les contributeurs principaux sont également présents pour discuter via le nouveau forum ou sur le canal IRC associé #pixls.us sur Freenode.

2. Améliorations propres au greffon G’MIC pour GIMP

Trois améliorations notables ont été apportées à l’interface du greffon G’MIC pour GIMP. Nous allons les détailler dans cette section.

2.1. Importation et exportation via les tampons GEGL

Le greffon est maintenant capable d’importer et exporter les données images de et vers GIMP en passant par les tampons GEGL qui forment la base de la version de développement 2.9 de GIMP. En pratique, cela signifie que le greffon peut travailler avec des images à grande profondeur de bits (par exemple avec des pixels stockés sous forme de flottants 32 bits par canal, à ne pas confondre avec des images au contenu pornographique !), et ceci sans aucune perte de précision.

En réalité, l’application d’un filtre seul sur une image va rarement avoir des conséquences visuelles graves dues au seul fait de la quantification de l’image traitée en 8 bits par canal. Mais tous ceux qui appliquent de nombreux filtres et effets, les uns à la suite des autres sur une même image, apprécieront que la précision numérique maximale soit conservée lors de leur flux de travail (workflow).

L’animation ci‐dessous (Fig. 2.1) illustre le phénomène de quantification subtil qui apparaît lorsque l’on applique certains types de filtres sur une image (ici un filtre de lissage anisotrope).

[image: Comparaison de l’application d’un même filtre G’MIC sur une image en 8 bits et en 32 bits par canal]
Fig. 2.1. Comparaison de l’application d’un même filtre G’MIC sur une image en 8 bits et en 32 bits par canal.

Sur la droite de la figure 2.1, on aperçoit l’histogramme des luminances de l’image modifiée, qui contient une plus grande diversité de valeurs lorsque le filtre travaille sur une image stockée avec des flottants 32 bits plutôt qu’avec des entiers 8 bits. L’enchaînement de ce genre de traitements peut assez vite créer des effets indésirables de quantification ou postérisation sur les images traitées (banding effect). En bref, le greffon G’MIC est déjà prêt pour la sortie de la prochaine version stable 2.10 de GIMP.

2.2. Prise en charge de l’UTF-8 dans les widgets

Le greffon gère maintenant les chaînes UTF-8 pour l’ensemble des widgets de l’interface, ce qui permet une meilleure internationalisation des filtres.

 Par exemple, nous disposons maintenant d’une version japonaise de l’interface et de certains filtres, comme l’illustre la copie d’écran du greffon ci‐dessous (Fig. 2.2).

[image: Le greffon G’MIC pour GIMP partiellement traduit en japonais]
Fig. 2.2. Le greffon G’MIC pour GIMP partiellement traduit en japonais.

2.3. Une interface plus réactive

Le greffon réagit mieux aux changements de paramètres d’un filtre lorsque celui‐ci est en train de calculer le résultat d’une prévisualisation. Un mécanisme d’annulation du calcul en cours a été ajouté pour ne plus attendre qu’un filtre ait fini de générer sa prévisualisation avant de pouvoir agir sur l’interface. C’est tout bête, mais ça améliore énormément l’expérience utilisateur.

Notons également l’initiative intéressante de Jean‐Philippe Fleury, un aimable contributeur, qui propose sur sa page web une galerie recensant la quasi‐totalité des effets disponibles dans le greffon. Voilà un très bon moyen d’avoir un aperçu rapide des filtres, et de pouvoir observer le résultat de chaque filtre sur des images différentes, parfois avec des paramètres différents.

3. Ajout de l’algorithme Patchmatch

PatchMatch est un algorithme de mise en correspondance de blocs d’images qui rencontre, depuis quelques années, un certain succès dans la communauté du traitement d’images, notamment grâce à sa rapidité d’exécution et au fait qu’il se parallélise relativement bien.

C’est devenu une technique de base utilisée dans de nombreux algorithmes récents nécessitant des comparaisons rapides de patchs, en particulier des algorithmes de reconstruction de morceaux manquants dans des images, de synthèse de textures, ou encore de super-résolution.

Il est donc satisfaisant d’annoncer que G’MIC intègre maintenant une implémentation parallélisée de cet algorithme (via la commande native -patchmatch) pour la mise en correspondance locale de patchs dans des images 2D et 3D. C’est sur la base de cet algorithme que deux filtres intéressants ont été ajoutés récemment.

3.1. Inpainting : reconstruction d’image

Un nouveau filtre de reconstruction d’image — inpainting — utilisant un algorithme multi‐résolution, permet de reconstruire des morceaux d’images manquants ou considérés comme invalides. Très pratique pour virer tata Renée en maillot de bain de vos photos de vacances à Ibiza !

À noter que ce n’est pas le premier algorithme de reconstruction « basé patch » disponible dans G’MIC (cette dépêche de 2014 parlait déjà d’un filtre équivalent). C’est juste un algorithme différent, qui donne donc des résultats différents. Et, dans ce domaine, avoir le choix de pouvoir générer plusieurs types de résultats n’est vraiment pas du luxe, étant donné la nature particulièrement mal posée du problème de la reconstruction d’images.

Si vous avez comme moi une machine avec tout plein de cœurs qui ne demandent qu’à chauffer, alors cette nouvelle implémentation tirant parti du multi‐threading risque de bien vous plaire ! Voilà deux exemples de résultats (Fig. 3.1 et Fig. 3.2) que l’on peut obtenir très rapidement avec ce filtre :

[image: img]
Fig. 3.1. Application du nouveau filtre d’inpainting pour la suppression d’un ours.

[image: img]
Fig. 3.2. Application du nouveau filtre d’inpainting pour la suppression de la tour Eiffel.

Une vidéo montrant comment ce dernier exemple a été réalisé (en 1 min 07 exactement) est disponible sur YouTube (vidéo en temps réel sans trucages, mais avec un PC à 24 cœurs_ quand même !). Ça paraît assez magique de voir que l’algorithme a été capable de reconstruire tout seul des bouts d’arbres entiers de manière assez cohérente à la place des pieds de la tour Eiffel (en effectuant en réalité un « bête » clonage d’un arbre existant ailleurs dans l’image !). Mais, je vous rassure, ça ne marche pas aussi bien avec toutes les images…

Cette technique de reconstruction multi‐résolution basée sur PatchMatch est grosso modo la même que celle introduite dans PhotoShop CS5 en 2010, sous l’appellation (très marketing) « Content‐Aware Fill ». La principale force de ce type d’algorithme est d’être capable de reconstruire de larges zones texturées à l’intérieur des masques définis par l’utilisateur. À noter que dans le cadre du doctorat de Maxime Daisy (qui a soutenu sa thèse avec succès la semaine dernière, bravo à lui !), nous avons également réalisé quelques extensions sympathiques de ce type d’algorithmes pour supprimer des objets en mouvement dans des séquences vidéos (voir la page de démo correspondante). Ces extensions ne sont pas encore disponibles dans G’MIC (et sont encore relativement coûteuses à calculer), mais cela arrivera peut‐être un jour, qui sait ?

3.2. Re-synthèse de textures

En utilisant le même type de technique multi‐résolution, un filtre de synthèse de textures a également été ajouté. Il permet de synthétiser une texture de taille quelconque à partir d’une texture « modèle » donnée en entrée.

Bien sûr, il ne s’agit pas ici de faire une simple répétition en tuiles de la texture d’entrée, mais bien de régénérer une texture ayant les mêmes caractéristiques en copiant‐collant des bouts de la texture modèle de telle manière que le résultat final ne contienne pas de discontinuités visibles.

La figure 3.3 illustre un exemple de synthèse d’une texture d’une taille de 512 × 512 pixels (image de droite) à partir d’une texture modèle plus petite, de taille de 280 × 512 pixels (image de gauche). Une comparaison du résultat obtenu avec l’application bête et méchante d’une simple répétition en tuiles de la texture modèle (image du milieu) est également visible.

[image: img]
Fig 3.3. Exemple de synthèse d’une texture complexe avec G’MIC.

Nous avions déjà un algorithme de re‐synthèse de texture disponible dans G’MIC, mais celui‐ci ne fonctionnait bien qu’avec des micro‐textures. L’exemple de la figure 3.3 montre que ce nouvel algorithme est quant à lui capable de régénérer des macro‐textures plus complexes. On peut imaginer pas mal d’applications à ce genre de filtre, notamment dans le domaine du jeu vidéo (rewind pourrait peut‐être confirmer ?).

Bref, vous l’avez compris, avoir une implémentation de l’algorithme PatchMatch dans G’MIC va très certainement être bénéfique pour élaborer d’autres filtres d’image intéressants par la suite (on peut imaginer l’utiliser dans le cadre de la super‐résolution ou du morphing à l’avenir, si le temps le permet).

4. Un évaluateur d’expressions plus performant

Je vais rentrer ici dans des considérations un peu plus techniques concernant l’évolution de G’MIC. En tant qu’utilisateur très régulier de G’MIC (pour mon travail de recherche), j’ai été confronté à un obstacle qui devenait récurrent lors de son utilisation. Mais, comme je suis aussi le développeur principal de G’MIC, cela m’a amené à repenser et améliorer une fonctionnalité clef du logiciel (et c’est probablement la contribution la plus significative de ces huit derniers mois, même si ce n’est pas encore très visible pour l’utilisateur). J’expose ici mon cheminement et la solution technique aboutissant à la contribution proposée.

Jusqu’à présent, G’MIC avait été pensé comme un moyen simple et rapide de construire des « pipelines d’opérateurs » de traitement d’image (pouvant intégrer éventuellement des boucles et des tests conditionnels), ces pipelines étant par la suite exécutés par un interpréteur. La majorité des filtres d’image présents dans G'MIC sont d’ailleurs élaborées comme ceci.

Or, il arrive fréquemment qu’on ait envie de « prototyper » des algorithmes plus « bas niveau », qui travaillent à l’échelle du pixel et qui ne peuvent pas s’exprimer efficacement comme une suite de macro‐opérateurs (en supposant, bien sûr, qu’on ne dispose pas d’un macro‐opérateur qui implémente déjà ledit algorithme !). C’est le cas par exemple pour des algorithmes qui parcourent tous les pixels (x,y) d’une image, et qui pour chaque pixel, effectuent une série d’opérations non triviales dépendant de la valeur d’autres pixels localisés plus ou moins loin du pixel courant (ou carrément sur une autre image) selon un schéma non ordonné par exemple (sans être complètement aléatoire non plus).

Dans ce genre de cas, généralement, le pipeline G’MIC correspondant devient un peu lourd à exécuter, notamment du fait de l’interprétation des boucles imbriquées en (x,y). Notons que ce problème n’est pas propre à G’MIC. Demandez à un traiteur d’images utilisant Matlab les trésors d’ingéniosités qu’il faut parfois déployer pour éviter d’écrire des scripts avec des boucles imbriquées explicites sur (x,y) pour parcourir les pixels d’une images, pour vous en convaincre. C’est un fait : en traitement d’images, on dispose très vite d’une quantité non négligeable de données à traiter. Et cela ne va pas en s’arrangeant, du fait de la progression constante des résolutions des images, mais aussi du fait de la complexité croissante des algorithmes (il est courant d’avoir des algorithmes en O(Nᵖ) où N = W × H est le nombre de pixels de l’image et p supérieur à 2). Bref, faire du prototypage d’algorithmes « bas niveau » un peu lourds en traitement d’images avec des langages interprétés, ça peut vite devenir pénible en termes de temps de calcul.

La meilleure solution reste alors d’écrire ces algorithmes dans un langage compilé (au hasard, C++) pour pouvoir les tester sans attendre des plombes devant son écran que ça s’exécute. Mais on perd alors le confort et la rapidité de prototypage que procurent les langages interprétés. Ou alors on construit un module Matlab, Python ou autre à partir de l’algorithme compilé, et on se retrouve alors à faire du travail de liaison — binding — plutôt pénible. Bref, on perd du temps pour un truc qui n’est même pas sûr de marcher au final.

Mon objectif était donc de pouvoir prototyper la plupart de mes algorithmes directement en G’MIC, en acceptant d’avoir une baisse de performances (comparativement à un langage compilé comme le C++), mais en évitant que ça devienne ridiculement lent. La solution classique, vous l’avez deviné, c’est d’inclure un mécanisme de compilation à la volée, ce que j’ai donc réalisé pour la sous‐partie de l’interpréteur G’MIC qui s’occupe de l’évaluation des expressions mathématiques (et qui est centrale à l’infrastructure, comme on peut s’en douter).

Lorsque l’interpréteur rencontre une expression mathématique à évaluer plusieurs fois (pour chaque pixel d’une image par exemple), il la compile d’abord sous forme de code intermédiaire — bytecode — qui devient ensuite très rapide à évaluer pour chaque pixel. En réalité, ce mécanisme est présent depuis des années dans G’MIC, mais il a été significativement amélioré ces derniers mois pour permettre l’évaluation d’expressions qui peuvent être considérées comme des petits programmes en eux‐mêmes (contenant des boucles, des variables, des tests conditionnels, etc.), plutôt que comme de « bêtes » formules mathématiques.

L’exemple jouet qui illustre ces nouvelles possibilités est le rendu de l’ensemble fractal de Julia qu’il est maintenant possible d’écrire en une ligne de commande (attention, ça peut piquer les yeux au premier abord) :

$ gmic 1024,1024,1,1,"zr = -1.2+2.4*x/w; zi = -1.2+2.4*y/h; for(iter = 0, zr^2+zi^2<=4 && iter<256, ++iter, t = zr^2 - zi^2 + 0.4; (zi *= 2*zr) += 0.2; zr = t);iter" -map 7

Cet appel de G’MIC en ligne de commande génère cette image en résolution 1024 × 1024 pixels (l’image a été réduite ici par commodité de lecture) :

[image: img]
Fig. 4.1. Génération d’une fractale Julia utilisant le nouvel évaluateur d’expressions mathématiques de G’MIC.

Bien entendu, on peut aussi écrire ça plus posément, en utilisant des fichiers de commande G’MIC :

Fichier 'julia.gmic'

julia_expr :
 -input $1,$1
 -fill "
 zr = -1.2 + 2.4*x/w;
 zi = -1.2 + 2.4*y/h;
 for (iter = 0, zr^2+zi^2<=4 && iter<256, ++iter,
 t = zr^2 - zi^2 + 0.4;
 (zi *= 2*zr) += 0.2;
 zr = t
);
 iter"
 -map 7

On lance ensuite le rendu de l’image de la façon suivante :
gmic julia.gmic -julia_expr 1024

La complexité algorithmique de ce rendu fractal n’est pas démente, sans être négligeable non plus : pour chacun des 1024², soit 1 048 576 pixels de l’image, on va calculer au maximum 256 itérations pour évaluer la couleur d’un point (déterminé par le nombre d’itérations nécessaires pour vérifier le critère de divergence de la suite complexe calculée ici). Donc, ça fait quand même en moyenne plusieurs dizaines de millions d’itérations pour la génération de l’image complète. Là où c’est intéressant, c’est que G’MIC va automatiquement déterminer que l’expression mathématique associée peut s’évaluer en parallèle en divisant l’image en blocs de pixels évalués indépendamment sur chaque cœur disponible. Au final, le temps de calcul de l’image de la figure 4.1 (en résolution 1024 x 1024 pixels) se réalise en un temps plus que raisonnable : 0,176 s sur mon PC de bureau à 24 cœurs, et 0,631 s sur mon portable quadri‐cœur. Évidemment, si l’on compare ce temps d’exécution avec la commande native équivalente -mandelbrot (donc compilée en C++) qui était déjà disponible dans G’MIC, on ne peut qu’être déçu : la commande native génère la même image en 0,055 s seulement (sur le quadri‐cœur). C’est douze fois plus rapide !

Certes, mais supposons maintenant que je veuille visualiser cette fractale en colorant les points par une mesure autre que le nombre d’itération de la série complexe avant divergence. Par exemple, je souhaite visualiser la valeur de la dernière partie imaginaire calculée avant divergence. Il me suffit de modifier l’appel à G’MIC de la façon suivante (je vous la fais ici en version courte) :

$ gmic 1024,1024,1,1,"zr = -1.2+2.4*x/w; zi = -1.2+2.4*y/h; for(iter = 0, zr^2+zi^2<=4 && iter<256, ++iter, t = zr^2 - zi^2 + 0.4; (zi *= 2*zr) += 0.2; zr = t);zi" -normalize 0,255 -map 7

Et voilà ce que j’obtiens (toujours en moins de 0,7 s) :

[image: img]
Fig. 4.2 : Autre type de visualisation lors de la génération d’une fractale Julia avec l’évaluateur d’expressions mathématiques de G’MIC.

Auparavant, si j’avais voulu réaliser la même chose avec G’MIC, j’aurais dû :

	Soit ajouter de nouvelles options à la commande native -mandelbrot pour permettre ce type de visualisation. Ce qui veut dire : écrire du code C++, compiler une version complète de G’MIC avec ces modifications incluses, l’empaqueter et sortir une nouvelle version. Ce ne serait pas vraiment une façon simple et rapide de faire profiter l’utilisateur de cette nouvelle possibilité de visualisation (si vous avez déjà utilisé le greffon G’MIC pour GIMP et son mécanisme de mise à jour des filtres par Internet, vous comprenez certainement ce que je veux dire par là).

Sans compter qu’on ne peut décemment pas prévoir tous les types de visualisation qu’un utilisateur va vouloir générer !

	Soit écrire un script G’MIC qui aurait fait la même opération que la commande julia_expr. Mais comme l’algorithme ici est très spécifique et réalise des choses « sur mesure » au niveau pixel,

cela aurait effectivement demandé l’écriture explicite de trois boucles (x,y,iter) imbriquées, qui aurait été interprétées, et qui auraient mis probablement plusieurs minutes à réaliser leur travail.

Nous avons maintenant un système de précompilation à la volée d’expressions mathématiques, dont l’évaluation devient relativement rapide pour chacun des pixels qui composent l’image à générer, d’autant plus que cette évaluation est réalisée en parallèle si votre machine possède plusieurs cœurs. Pour les algorithmes de traitement d’images qui nécessitent des opérations « sur mesure » (e.g. non linéaires) pixel par pixel, cette étape de précompilation rend le processus de prototypage incroyablement efficace. Ce système a été d’ailleurs abondamment utilisé pour le prototypage de deux algorithmes basés sur PatchMatch dont j’ai parlé en section précédente. Nul doute que beaucoup de futurs nouveaux filtres pourront bénéficier de cette nouvelle fonctionnalité présente dans G’MIC.

J’ai par ailleurs comparé la performance de l’évaluateur d’expressions de G’MIC avec la fonctionnalité identique présente dans ImageMagick, via leur commande -fx, qui exploite également le multi‐cœur (mais qui n’utilise en revanche pas de précompilation à la volée des expressions) : G’MIC évalue des expressions même simples entre dix et vingt fois plus rapidement sur des images couleur de taille moyenne (3072 × 2048 pixels dans mes tests, à retrouver en section 6 d’un article publié sur le site Open Source Graphics).

5. Vector Painting : Un exemple de construction d’un filtre simple, en partant de zéro.

Un nouveau filtre d’abstraction d’image nommé Vector Painting, a été développé à partir de ces améliorations apportées à l’évaluateur d’expressions de G’MIC.

Ce n’est pas un filtre très impressionnant, mais j’en relate ici la conception, car ce filtre particulier a un fonctionnement suffisamment simple pour ne pas avoir à rentrer dans des détails techniques compliqués de traitement d’image, et ça donne une bonne idée de la façon dont un nouvel effet peut être construit rapidement avec G’MIC en partant de zéro, jusqu’à son intégration finale dans le greffon pour GIMP. Il est amusant de noter que ce filtre a été élaboré complètement par hasard, alors que je cherchais à corriger quelques erreurs dans le code de l’évaluateur d’expressions mathématiques de G’MIC.

Supposez que vous voulez déterminer pour chaque pixel d’une image, l’orientation discrète de la variation spatiale d’intensité lumineuse maximale du pixel (avec une précision d’angle de 45°). Pour chaque pixel centré dans un voisinage 3 × 3, on cherche à déterminer quel pixel du voisinage a la différence de valeur maximale avec le pixel du centre (cette différence étant mesurée en valeur absolue). Dans un premier temps, on calcule donc la luminance de l’image couleur d’entrée. Puis, on cherche à transformer chaque pixel de cette image de luminance en une étiquette (un entier entre 1 et 8) qui représente une des huit orientations possibles du plan (à 45° près). C’est typiquement le genre de problème qui nécessite l’application d’opérations au niveau pixel qui sont suffisamment « exotiques » pour ne pas disposer d’un macro‐opérateur tout fait qui pourrait résoudre ce problème.

Avec le nouvel évaluateur d’expressions de G’MIC, la solution est étonnamment simple à mettre en œuvre :

Fichier 'foo.gmic'
foo :
 -luminance
 -fill "dmax = -1;
 nmax = 0;
 for (n = 0, ++n<=8,
 p = arg(n,-1,0,1,-1,1,-1,0,1);
 q = arg(n,-1,-1,-1,0,0,1,1,1);
 d = (j(p,q,0,0,0,1)-i)^2;
 if(d>dmax,
 dmax = d; nmax = n,
 nmax)
)"

En l’appliquant sur une image d’entrée nommée leno.jpg (à gauche sur la figure 5.1), nous obtenons l’image des orientations discrètes des variations maximales de luminance (à droite sur la figure 5.1) :

$ gmic foo.gmic leno.jpg -foo

[image: img]
Fig. 5.1. Calcul des orientations discrètes de variations maximales d’une image couleur.

En aparté, laissez‐moi vous raconter que j’ai récemment reçu plusieurs courriels et messages de gens qui prétendent que réutiliser l’image de Lena (bien connue des traiteurs d’images) est quelque chose de « sexiste » (quelqu’un a même utilisé le terme « pornographique ») car c’est un portrait provenant à l’origine d’un numéro du magazine Playboy de 1972. Je vous invite à lire la page sur l’histoire de Lena, si vous ne savez pas pourquoi nous utilisons souvent cette image. L’occasion aussi de voir la photo originale dans son ensemble est de vous faire une idée sur le côté « pornographique » de la chose. Néanmoins, comme je ne souhaite pas blesser ces personnes à la sensibilité exacerbée, j’ai décidé d’utiliser une petite variation de l’image originale en la mixant avec un portrait de Jay Leno. Appelons cette dernière image « Leno » plutôt que « Lena ». Et si une seule lettre peut tout arranger, alors qu’il en soit ainsi.

L’image des orientations de la figure 5.1 peut paraître très moche (et elle l’est), mais ce n’est pas très étonnant : l’image originale contient un peu de bruit, ce qui se traduit par beaucoup de directions de variations d'intensité lumineuse incohérentes dans les régions de couleur quasi‐constantes. Lissons l’image originale un petit peu avant de calculer l’image des orientations discrètes et voyons voir ce que ça donne (Fig. 5.2).

$ gmic foo.gmic leno.png --blur 1% -foo

[image: img]
Fig 5.2. Calcul des orientations discrètes de variations de luminance sur une image lissée au préalable.

Voilà qui semble plus intéressant : le lissage permet de créer des portions larges d’étiquettes constantes, c’est‐à‐dire des régions où l’orientation des variations maximales de luminance est la même. Les contours du portrait original apparaissent comme des frontières naturelles dans l’image des orientations. Pourquoi alors ne pas remplacer les composantes connexes ainsi étiquetées par la couleur moyenne qu’elles recouvrent dans l’image originale ? Rien de plus facile avec G’MIC :

$ gmic user.gmic leno.png --blur 1% -foo[-1] -blend shapeaverage

Et nous obtenons alors une abstraction « constante par morceaux » de notre image d’entrée Leno (Fig. 5.3).

[image: img]
Fig. 5.3. Résultat après colorisation des zones d’orientations constantes.

Comme on peut l’imaginer, changer l’amplitude spatiale du lissage rend l’image résultante plus ou moins abstraite. À partir de là, il n’est pas bien compliqué de reprendre le code précédent, et de le transformer en filtre disponible immédiatement pour les utilisateurs du greffon G’MIC pour GIMP (le code complet de ce filtre, de seulement 19 lignes est visible ici). Les utilisateurs n’ont plus qu’à appuyer sur le bouton « Actualiser les filtres » de l’interface du greffon afin d’immédiatement disposer de ce nouvel effet Vector Painting.

[image: img]
Fig. 5.3. Aperçu du filtre _Vector Painting dans le greffon G’MIC pour GIMP.

Voilà, cela vous donne une idée de la façon dont les filtres sont prototypés puis ajoutés dans G’MIC. Ce qui est intéressant, c’est que l’étape qui permet de passer d’un prototype d’algorithme à un filtre distribué et utilisable est au final très rapide à réaliser. Cela explique comment de nouveaux filtres sont ajoutés fréquemment dans G’MIC, et pourquoi le greffon possède aujourd’hui plus de 440 filtres utilisables.

6. Des filtres et effets à foison !

Cette section illustre, en vrac, quelques autres fonctionnalités, effets et filtres qui ont été ajoutés depuis avril dernier. Les copies d’écran ci‐dessous montrent certains filtres accessibles depuis le greffon G’MIC pour GIMP, mais ces filtres sont bien sûr applicables à partir de toutes les interfaces disponibles (en ligne de commande, notamment).

	
Moteur de recherche de filtres : voilà une fonctionnalité qui nous a longtemps été demandée, et nous avons donc proposé une première ébauche d’un moteur de recherche de filtres par mots‐clefs. En effet, le nombre de filtres du greffon n’allant pas en diminuant, ce n’est pas toujours facile de retrouver un filtre particulier, surtout si l’on a oublié de le mettre dans ses favoris. Bref, cet outil peut dépanner en cas de trous de mémoire (mais encore faut‐il se rappeler d’un mot‐clef pertinent pour la recherche).

[image: img]
Fig.6.1. Nouveau moteur de recherche de filtres par mot clés dans le greffon GIMP.

	Filtre Freaky B&W : ce filtre propose de convertir une image couleur en image en noir et blanc (en niveaux de gris pour être plus précis), en résolvant une équation de Poisson plutôt qu’en appliquant une simple formule linéaire de calcul de luminance. Le but est d’obtenir une image N&B qui contient les détails de contraste maximum présents dans chacun des canaux couleurs de l’image originale. Le filtre génère donc des images souvent très contrastées, à la façon des images HDR (mais en niveaux de gris).

[image: img]
Fig. 6.2. Filtre Freaky B&W pour la conversion d’image couleur en niveaux de gris.

	Filtre Bokeh : ce filtre permet de générer des effets de type Bokeh sur des images (flous artistiques). Il est très paramétrable et permet de générer des Bokeh avec des formes variées (cercles, pentagones, octogones, étoiles…).

[image: img]
Fig. 6.3. Application du nouveau filtre Bokeh sur une image couleur.

	Filtre Rain & snow : comme son nom l’indique, ce filtre permet d’ajouter un effet de pluie ou de neige sur vos images (ici en prenant en exemple un zoom de l’image précédente).

[image: img]
Fig. 6.4. Ajout de pluie sur une image couleur avec le filtre Rain & snow.

	Filtre Neon lightning : pas grand chose à dire sur ce filtre, il génère des courbes partant d’une région A à une autre région B et stylise ces courbes comme des lumières à néon. Pratique pour faire des fonds d’écran probablement. :)

[image: img]
Fig. 6.5. Effet de néons courbes avec le filtre Neon Lightning.

	Filtre Stroke : ce filtre permet d’« habiller » des formes simples présentes sur un calque transparent, en les enrobant avec des dégradés de couleurs par exemple. La figure ci‐dessous illustre la transformation d’un texte simple (monochrome) « LinuxFr » par ce filtre.

[image: img]
Fig. 6.6. Application du filtre Stroke pour décorer un texte simple.

	Filtre Light leaks : il s’agit ici de simuler des effets de lumière indésirable sur des photos. En général, c’est plutôt le genre d’effets qu’on souhaite au contraire enlever ! Mais la simulation de dégradations d’images peut servir dans certains cas (pour ceux qui veulent rendre leur images de synthèse plus réalistes par exemple).

[image: img]
Fig. 6.7. Simulation d’effets de lumière indésirable avec le filtre Light leaks.

	Filtre Grid [triangular] : ce filtre transforme une image en grille composée de triangles, avec de nombreux choix de types de grilles différents.

[image: img]
Fig. 6.8. Transformation d’une image en grille triangulaire.

	Filtre Intarsia : ce filtre est relativement original, puisqu’il permet de transformer une image en un schéma de construction d’un tricot de type Intarsia.

C’est un filtre qui a été suggéré par une utilisatrice du forum GimpChat pour lui permettre de distribuer des schémas de tricot personnalisés (apparemment il existe des sites qui en proposent, mais en échange d’espèces sonnantes et trébuchantes). Le filtre en lui‐même ne modifie pas l’image, mais génère un schéma de création sous forme d’une page Web (dont un exemple est visible sur gmic.eu).

	Filtre Drop water : alors, je dois avouer que je l’aime particulièrement celui‐ci. Ce filtre permet de simuler l’apparition de gouttes d’eau sur une image. Dans sa version basique, il ressemble à ça :

[image: img]
Fig. 6.9. Ajout de gouttes d’eau sur une image avec le filtre Drop water.

Mais là où ça devient vraiment intéressant, c’est que l’utilisateur peut définir ses propres formes de gouttes en ajoutant un calque transparent contenant quelques formes colorées. Par exemple, si l’on ajoute ce calque (ici, en rose) sur l’image précédente :

[image: img]
Fig. 6.10. Ajout d’un calque pour définir la forme des gouttes d’eau.

Alors, le filtre Drop water va vous générer cette image avec vos gouttes d’eau personnalisées :

[image: img]
Fig. 6.11. Synthèse de gouttes d’eau personnalisées avec le filtre Drop water.

Par ailleurs, le filtre a le bon goût de générer le résultat comme un empilement de plusieurs calques qui correspondent chacun au rendu des différents phénomènes physiques simulés pour la synthèse, à savoir : les tâches spéculaires, l’ombre portée et l’ombre propre, ainsi que l’effet de réfraction. On peut donc facilement manipuler tous ces calques par la suite, pour donner des effets supplémentaires à l’image générée, par exemple en appliquant un filtre monochrome sur l’image originale tout en gardant le calque de réfraction calculé sur l’image couleur originale, ce qui donne ceci :

[image: img]
Fig. 6.12. Filtre Drop water suivi d’un changement colorimétrique de l’image originale uniquement.

Une petite vidéo tutoriel a été réalisée pour expliquer comment réaliser cet effet pas à pas sous GIMP (ça prend pas plus de deux minutes, même pour un débutant).

Mieux encore, on peut mixer les calques générés par le filtre Drop water en les surimposant à d’autres images. La figure suivante montre un tel traitement à partir de deux images de portraits (qui ont été préalablement recalées). C’est très facile à réaliser, et le résultat est plutôt sympathique.

[image: img]
Fig. 6.13. Filtre Drop water appliqué pour une fusion liquide de deux portraits distincts.

Voilà qui termine cet aperçu non exhaustif de quelques filtres très « visuels » ajoutés dernièrement. À noter que chaque nouvel ajout fait l’objet d’une annonce sur le flux Google+ de G’MIC, donc c’est assez facile de suivre l’évolution du projet au jour le jour, si ça vous intéresse de voir ce qu’on peut faire en traitement d’images libre.

7. Autres améliorations et faits notables

Ajoutons pour finir ces quelques informations en vrac, relatives au projet :

	Tout d’abord, signalons que nous sommes rentrés en contact avec Tobias Fleischer, un développeur professionnel de greffons pour Adobe After Effects et Premiere Pro, entre autres logiciels de post‐production vidéo. Il a déjà réalisé un gros travail de développement d’une DLL encapsulant la bibliothèque libgmic, et a utilisé cette DLL pour implémenter des prototypes de greffons proposant les filtres G’MIC pour After Effects. Vous pouvez en voir un exemple sur la figure suivante (en l’occurence, un filtre de « squelettisation » de formes) :

[image: img]
Fig. 7.1. Prototype de greffon G’MIC tournant sous Adobe After Effects.

On ne peut qu’espérer que ceci arrive très bientôt. J’entends déjà râler certaines moules : « Mais pourquoi ne pas avoir fait ça pour un logiciel libre comme Natron plutôt que pour un logiciel 100 % propriétaire ? ». Le fait est qu’il est en train de le faire, justement ! Et pas seulement pour Natron, mais pour tout logiciel de traitement vidéo compatible avec l’API normalisée OpenFX (dont Natron fait partie). La copie d’écran ci‐dessous montre par exemple un greffon G’MIC tournant sous le logiciel Sony Vegas Pro en utilisant l’API OpenFX. A priori, ça marcherait pareil pour Natron.

[image: img]
Fig. 7.2. Prototype de greffon G’MIC compatible OpenFX, tournant sous Sony Vegas Pro.

Tout ceci ne doit être encore considéré que comme du travail en cours, il reste des bogues à corriger et des améliorations à faire, mais c’est quand même prometteur.

	Continuons avec une autre bonne nouvelle : Andrea, un gentil contributeur (par ailleurs développeur du logiciel PhotoFlow) a réussi à comprendre pourquoi G’MIC plantait fréquemment sous Mac OS X lorsqu’il effectuait ses calculs en parallèle, et a proposé un correctif permettant de résoudre ce problème (c’était un simple problème de pile allouée trop petite pour les fils d’exécution de calcul). G’MIC sous Mac OS X doit donc être pleinement fonctionnel à l’heure qu’il est.

	L’interface ZArt a également pas mal évolué, avec de nouveaux filtres ajoutés, une détection automatique des résolutions de webcams, ainsi que la possibilité d’avoir une double fenêtre de visualisation (une fenêtre de contrôle et une fenêtre de visualisation à mettre sur un deuxième écran pour faire des démos).

[image: img]
Fig 7.3. Le logiciel ZArt faisant tourner le filtre G’MIC Drop water en double fenêtre en temps réel sur des images d’une webcam.

	Une nouvelle démo animée a également fait son apparition dans G’MIC, via la commande -x_landscape. Cela n’a en soi aucun intérêt concret (pour l’utilisateur) si ce n’est de tester la rapidité de l’interpréteur (et puis c’est marrant, non ?). Rappelons que l’ensemble des démos animées et interactives sont disponibles via la ligne de commande.

$ gmic -demo

[image: img]
Fig. 7.4. Paysage virtuel animé avec la commande « -x_landscape ».

Comme je commençais à avoir pas mal de petites animations marrantes intégrées à G’MIC, je les ai compilées sous forme d’une petite intro unique, codée entièrement sous forme d’un script G’MIC, nommée la BBQ intro 2016 et fleurant bon le style 8 bits/16 bits qui nous manque tant ! Vous pouvez apercevoir la vidéo de cette intro sur YoutTube. Ça n’a pas l’air forcément fameux, mais gardons à l’esprit que tout ça est généré à 100 % par l’interpréteur G’MIC, qui n’est pas forcément fait pour ça à la base. :)

8. Et ensuite ?

Cette dépêche a fait un (long) tour d’horizon des points les plus importants qui ont émergés après ces derniers mois passés à travailler sur le projet G’MIC. Nous n’avons pas forcément de plan bien défini des choses sur lesquelles nous voulons nous focaliser par la suite, nous ferons au gré de nos envies et de nos besoins (et des contributeurs qui se manifesteront). Dans tous les cas, il apparaît que le projet G’MIC est toujours bien dynamique, et peut potentiellement intéresser et toucher de plus en plus de gens dans le futur. Ceci, grâce aux divers contributeurs et aux utilisateurs qui font des retours réguliers sur le logiciel, encore un grand merci à eux pour leurs efforts ! On espère annoncer encore de belles choses sur LinuxFr.org autour du projet G’MIC dans les années à venir dans tous les cas.

Et pour finir, vive le traitement d’images libre !

Aller plus loin

	
Le projet G’MIC
(726 clics)

	
Le greffon G’MIC pour GIMP
(461 clics)

	
Initiation à G’MIC en ligne de commande
(146 clics)

	
Documentation technique de référence
(130 clics)

	
Forum de discussions autour de G’MIC
(128 clics)

	
Précédents articles LinuxFr.org sur G’MIC
(178 clics)

EPUB/de6f6d76bed2e2da8c6d0541614c06614a27ccccc623ca8f1d42cb9d.jpg
e \
\

N
AL A R RANRY

EPUB/b299d1fc6ec42feec1b988492adc27d2283e973a3ae8d1e7068fd7d6.jpg
GIMIC For GIMP 2.8 - Linux 64bits - 1.6.8

J—— stroke
Frequencies s
Layers

Agntayers smootivess (px)
lend fveragst

sendedges]
slend ade] oiection e
lend [mecian]

Theshold (%)

shape Rowd

end seamiess) Zo0m (%) 10000
alend standrd]
et vanie o)

Xahite o)

Input /Output pestoties

oputiayes. worph ayers strtingcolor

nplace defaut) Endingclor

stroke

utput mesages. Ties tolayers Insde color

Previewmode. | icate chdion: ousidecolor £
ndering Outputstrokelayeron Top

] @menet B] | g keeporighnatimagesize

Xcancel || Drlscreen || SlReset || apply

Normal

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/9bb7d706262eab56d11b65f8a90b567454011417759dcca0b6469c94.jpg

EPUB/e7e4072b87da543ae61496234295a3d3dbeccdcbbb8a3cb7a8f67bae.jpg

EPUB/81688e260b4b0177855b9e0369e38f933bab2e53b5649a1e54d3243c.gif
“[lens] (imported)-1.0 (RGS color 8-bit gamma integer, GIMP bulltin sRGB, 1 layer) S12x512 - GIMP

[crstens | s wstogam,
vt
p——

8 bits / chermel

EPUB/32122678ee9ebc1a3852b10ae1181c06cae616e394935ebc0b13a387.jpg
GIMIC for GiMp 1.6.6.0 [pre-release #091615] - Linux 64 Bits

Avalable fiters (435

Lyeje'spaiting
Make squiggly
Morphology paiting
Paintdoub Aothr i Tre
Paintng et e, 09/352015
Pendrawing
Photaillstration
Polygonize delauray]
Polygonize [eneray]
Poster edges
Posterized ithering
Rodilus
shapeism
Vector painting
Warhol
Input / Output Watercolor
Wil draving
* Black & white
output mode. + colors

previewtype Duplicatevertical

input layers.

+ contours

omE g * Deformations

prevewmode. * Degradations
* vetats

Normal
* Fim emulation

on=d +]] @ memet |©

X cancel || Corulscreen | | Reset

EPUB/da33dd0fd26140bb5d52fc87a54471e6b587f7f9de9246ab51b5e384.png
@5 GMIC

GREYC's Magic for Image Computing ~ @&%

EPUB/aea85ef15de8e1a01a4e5187380d03171a9d97566260188ac08b735d.gif

EPUB/5555d2567334563b9cb9408d9fd5990e4787ecb7c39ae1718ff13139.jpg

EPUB/a562b468dfbc0a9b58cec0676c28f6dec3668d24fb77b69b69f3c8ac.jpg
G'MIC for GIMP 26 - Linux 64 bits - 1.6.8

Avaabl iers (45) ght leaks
i Leskype
stroke Angle
s oayers il
Tonestolayers

- Lights & shadows i

oum e
Contrastswiss mask

Dodge and bun Sty

orap shadow slendmade | Add

oropshadow3d

Equalzeshadow

Light gow

ightlesks

Ughepateh s er s th e ks st st

© Outputasseparatelayers

Previewtype | Duplicate vertcal

Light rays Lomo Ligh Leaks

e Relieflight

input /Output P S ———————

Siice uminosity
pattems.
nplace (defaut) Rendering
Repair
Sequences

Inputlayers.

Output messages.

Previewmode. Stereoscopic 34
Testing
Large hietion

[Crrwem} vlle @ineret | @

Xcancel || Crulscreen || SIReset

EPUB/7261dbbec0cc55fc793c2c80a4486a434624830d87221a442b524888.jpg

EPUB/7bb79da9ce1bf1cc9b98d69cbc0f39b0ce28fec68e39c3ae4d699da1.jpg

EPUB/d65353708b0c519c8203a061046756731c193a868679ddc0c4f5b27e.gif

EPUB/d8735857d10eb7f62ab5146af5cf6c7c0dc3fc9a9b18112651762452.jpg
& presen
I ouput:

Qe gty
Lage

[Fowm|

Avalable fiers (436):
Blackawhie
ocpater
cidean-poar
aleidoscopeende]
aledoscopelpaa]
xtedoscopermes]
Texeedgs

+/e| e B

stopes procecent

R
Vasibity

Pty v e
Jeerii ey

Ugreange
spectrsze
Speclarimensty
prm—
Stadowamptisde
Stadowsmootess
Prm—

Ot separae s

oo ekt e s 17005

Srscren || Breset || romty

EPUB/49a0d1c6ece7785e6fd4bc33765713c884a99c5143f82764195ab1bc.jpg
s 1.6 8p7e 130815

B8112939717)
Az ansn
arweg
S0/t b 209077 10

Colorizewithcaormas]

EPUB/d2027641c420f7fb08aaa9cf559c6bbdb7f315e3cc77a9e866c4e6d0.gif
Original

EPUB/4c19b4bc25908607e2231e55df0d1509d0fba659395216dbb3ab8186.gif

EPUB/20e71c9aae1a6f826796cc489384f34eae66a14a6e9192e1b2115b80.jpg

EPUB/imagessections16.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/7b43db2ea8d29404cbb4472b8f6cc7666efaf2088273d0959fee5239.jpg
Il
i
g
=]
©

EPUB/0cd174afb03f77a540db15e029ceb22a8cbaa08bb12a0c0fbf5b94af.jpg

EPUB/5b77d6249a9d7db128e596aec9d165f219639b0e8a5383322ef4fec9.jpg

EPUB/a0c2ad1bafdd4782c2b7a7fbe11f1a4fe8b0d2b8611235a3235b1962.jpg
Fle Edit Select View Image Layer Colors Tooks Filters Scriptfu Windows Help
B I b I =]

PNE D
aENBEN,
ENXWO L

Bo>d >0
Wepms -

i
£
i

=

M=t #
a8 B & & v e Loy 21,1) Bm ve. @

EPUB/7be43e7a147a75e44bb758dd5e790b91886a581dc2a8d983742d2941.jpg

EPUB/4b2799a781d2339fc434121a3bfa57e4a54e6e7c2239441a9f13076a.jpg
2 prevew
—yr—
gt apers
Inplce et
prevewmade.

[y

amic for ciMp 28

vt iters 445
vty foded]
sersymiored)
sy rndom lors].
sy {candom)

Aray g

e fartesin]
P s—
e ranguar]
Tiesbe rotaton

o e @

G ringian)
Patarnwidth

outinecolor | W

[—

[F—

Crutscreen | Dot || < apply

EPUB/d8e182e4c979eb4893f4463d50908d85bf7cf72f2df20b5dc304b940.jpg

EPUB/ceeed80caceed8b691aa5c3f0358285a9270782ae3bf10dd1357e885.jpg
GMIC for GIMP 2.8 Linux 64 bits - 1.6.8

Avalable fitrs (345) Search ftars

- About ypethe ik name ou wan 0 sarch for
About M Find [blur
Contributors

whose names contain: Sonnlond externatdata || Sortby | Fiternames :

update.

s Filter design & Include category/command names Inthesearch
Frends hll o fame
Gmicky-Roddy Matches | Update.
Links ++12 matches found:
Release notes
Blur by color in'/Resting/gmictuorials -
Seacchfltars. Blu [angular](n'/degradations/ -
Blur [depthorield in/degradations/ -
e i Blur [gaussian] i /degradations/)
Inputlayers. Blu glow] (n"/degradations/ .
Artistic Blur [lnear in/degradations/ -
Inplace (defaul) < Black & white Bl [radial(n/degradations/)
i Compressionblur (in/testing/garagecoder/)
Depth blur (n testing/garagecoder/)
Contours Frame (blur] (n'/Frames/)
= * Deformations Lens blu intesting/gentlemanbeggar)-
Erinirsia Sharpen [deblur] (in/detals)

o review

Input / Output User satisfaction survey

Output messages.

] (] Witernet |©) Latet update 07/06/2015

Xcancel || Carulscreen || {IReset || v Apply

EPUB/78eaa15ede1be36a0408bd566da9fe91982bbf1d4fa8116a2f7e3a13.jpg
Tiled! (512x512)% 2 A28 Resynthetized'(512x512)

Original (280%350

EPUB/06aaa4cbc0be854e550f364413af3c28c4092be3c2acf86b70b34de3.jpg

EPUB/87bac34ccd6dbff32e204f9caf6ded3c8edc911ac72368cb223de641.jpg
sopsuaNAG

5 ae

coBsuANAaB T

EPUB/3ae88dcf565abf6eceadcd93331c64b320340458d748c4b2a23e706d.jpg
GMIC For GIMP 2.8 - LInuX 64 IEs - 1,68

Avaabiefikers (445 Freaky detalls
lack & white Ampltue
Amp
Deormtion: erstiors
* Dagradstions
oetsits Chmell) veber uminance]
parseprocessing Auto

soatslovertap

s ffecths been don following:

Sharper

InputOutput Sharpen(gold meinel]
Sharpenfoctavesharpering

oupus mode. Sharpen richarczon

ouprt messages Sharpen(shock iers]

Sharpen unsharp mask]
Prevewmode. Sharpen whter]
Simplelocaconras

o s soral

Crcwem:] + o) Gmenet @

